J. Sebastian, J. V. Kureethara, S. Naduvath, C. Dominic
{"title":"图积的垂数研究","authors":"J. Sebastian, J. V. Kureethara, S. Naduvath, C. Dominic","doi":"10.2478/ausi-2019-0002","DOIUrl":null,"url":null,"abstract":"Abstract A path decomposition of a graph is a collection of its edge disjoint paths whose union is G. The pendant number Πp is the minimum number of end vertices of paths in a path decomposition of G. In this paper, we determine the pendant number of corona products and rooted products of paths and cycles and obtain some bounds for the pendant number for some specific derived graphs. Further, for any natural number n, the existence of a connected graph with pendant number n has also been established.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"16 1","pages":"24 - 40"},"PeriodicalIF":0.3000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on the pendant number of graph products\",\"authors\":\"J. Sebastian, J. V. Kureethara, S. Naduvath, C. Dominic\",\"doi\":\"10.2478/ausi-2019-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A path decomposition of a graph is a collection of its edge disjoint paths whose union is G. The pendant number Πp is the minimum number of end vertices of paths in a path decomposition of G. In this paper, we determine the pendant number of corona products and rooted products of paths and cycles and obtain some bounds for the pendant number for some specific derived graphs. Further, for any natural number n, the existence of a connected graph with pendant number n has also been established.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"16 1\",\"pages\":\"24 - 40\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2019-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2019-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Abstract A path decomposition of a graph is a collection of its edge disjoint paths whose union is G. The pendant number Πp is the minimum number of end vertices of paths in a path decomposition of G. In this paper, we determine the pendant number of corona products and rooted products of paths and cycles and obtain some bounds for the pendant number for some specific derived graphs. Further, for any natural number n, the existence of a connected graph with pendant number n has also been established.