I. Álvarez‐Miguel, P. Cidad, M. Pérez-García, J. López-López
{"title":"原发性高血压患者肠系膜血管平滑肌细胞中TRPC3和TRPC6通道组装的差异","authors":"I. Álvarez‐Miguel, P. Cidad, M. Pérez-García, J. López-López","doi":"10.1113/JP273327","DOIUrl":null,"url":null,"abstract":"Canonical transient receptor potential (TRPC)3 and TRPC6 channels of vascular smooth muscle cells (VSMCs) mediate stretch‐ or agonist‐induced cationic fluxes, contributing to membrane potential and vascular tone. Native TRPC3/C6 channels can form homo‐ or heterotetrameric complexes, which can hinder individual TRPC channel properties. The possibility that the differences in their association pattern may change their contribution to vascular tone in hypertension is unexplored. Functional characterization of heterologously expressed channels showed that TRPC6‐containing complexes exhibited Pyr3/Pyr10‐sensitive currents, whereas TRPC3‐mediated currents were blocked by anti‐TRPC3 antibodies. VSMCs from hypertensive (blood pressure high; BPH) mice have larger cationic basal currents insensitive to Pyr10 and sensitive to anti‐TRPC3 antibodies. Consistently, myography studies showed a larger Pyr3/10‐induced vasodilatation in BPN (blood pressure normal) mesenteric arteries. We conclude that the increased TRPC3 channel expression in BPH VSMCs leads to changes in TRPC3/C6 heteromultimeric assembly, with a higher TRPC3 channel contribution favouring depolarization of hypertensive VSMCs.","PeriodicalId":22512,"journal":{"name":"The Japanese journal of physiology","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Differences in TRPC3 and TRPC6 channels assembly in mesenteric vascular smooth muscle cells in essential hypertension\",\"authors\":\"I. Álvarez‐Miguel, P. Cidad, M. Pérez-García, J. López-López\",\"doi\":\"10.1113/JP273327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Canonical transient receptor potential (TRPC)3 and TRPC6 channels of vascular smooth muscle cells (VSMCs) mediate stretch‐ or agonist‐induced cationic fluxes, contributing to membrane potential and vascular tone. Native TRPC3/C6 channels can form homo‐ or heterotetrameric complexes, which can hinder individual TRPC channel properties. The possibility that the differences in their association pattern may change their contribution to vascular tone in hypertension is unexplored. Functional characterization of heterologously expressed channels showed that TRPC6‐containing complexes exhibited Pyr3/Pyr10‐sensitive currents, whereas TRPC3‐mediated currents were blocked by anti‐TRPC3 antibodies. VSMCs from hypertensive (blood pressure high; BPH) mice have larger cationic basal currents insensitive to Pyr10 and sensitive to anti‐TRPC3 antibodies. Consistently, myography studies showed a larger Pyr3/10‐induced vasodilatation in BPN (blood pressure normal) mesenteric arteries. We conclude that the increased TRPC3 channel expression in BPH VSMCs leads to changes in TRPC3/C6 heteromultimeric assembly, with a higher TRPC3 channel contribution favouring depolarization of hypertensive VSMCs.\",\"PeriodicalId\":22512,\"journal\":{\"name\":\"The Japanese journal of physiology\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Japanese journal of physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1113/JP273327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Japanese journal of physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1113/JP273327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differences in TRPC3 and TRPC6 channels assembly in mesenteric vascular smooth muscle cells in essential hypertension
Canonical transient receptor potential (TRPC)3 and TRPC6 channels of vascular smooth muscle cells (VSMCs) mediate stretch‐ or agonist‐induced cationic fluxes, contributing to membrane potential and vascular tone. Native TRPC3/C6 channels can form homo‐ or heterotetrameric complexes, which can hinder individual TRPC channel properties. The possibility that the differences in their association pattern may change their contribution to vascular tone in hypertension is unexplored. Functional characterization of heterologously expressed channels showed that TRPC6‐containing complexes exhibited Pyr3/Pyr10‐sensitive currents, whereas TRPC3‐mediated currents were blocked by anti‐TRPC3 antibodies. VSMCs from hypertensive (blood pressure high; BPH) mice have larger cationic basal currents insensitive to Pyr10 and sensitive to anti‐TRPC3 antibodies. Consistently, myography studies showed a larger Pyr3/10‐induced vasodilatation in BPN (blood pressure normal) mesenteric arteries. We conclude that the increased TRPC3 channel expression in BPH VSMCs leads to changes in TRPC3/C6 heteromultimeric assembly, with a higher TRPC3 channel contribution favouring depolarization of hypertensive VSMCs.