耦合Exascale多物理场应用:方法和经验教训

J. Choi, Choong-Seock Chang, J. Dominski, S. Klasky, G. Merlo, E. Suchyta, M. Ainsworth, B. Allen, F. Cappello, M. Churchill, Philip E. Davis, S. Di, G. Eisenhauer, S. Ethier, Ian T Foster, Berk Geveci, Hanqi Guo, K. Huck, F. Jenko, Mark Kim, James Kress, S. Ku, Qing Liu, Jeremy S. Logan, A. Malony, Kshitij Mehta, K. Moreland, T. Munson, M. Parashar, T. Peterka, N. Podhorszki, D. Pugmire, O. Tugluk, Ruonan Wang, Ben Whitney, M. Wolf, Chad Wood
{"title":"耦合Exascale多物理场应用:方法和经验教训","authors":"J. Choi, Choong-Seock Chang, J. Dominski, S. Klasky, G. Merlo, E. Suchyta, M. Ainsworth, B. Allen, F. Cappello, M. Churchill, Philip E. Davis, S. Di, G. Eisenhauer, S. Ethier, Ian T Foster, Berk Geveci, Hanqi Guo, K. Huck, F. Jenko, Mark Kim, James Kress, S. Ku, Qing Liu, Jeremy S. Logan, A. Malony, Kshitij Mehta, K. Moreland, T. Munson, M. Parashar, T. Peterka, N. Podhorszki, D. Pugmire, O. Tugluk, Ruonan Wang, Ben Whitney, M. Wolf, Chad Wood","doi":"10.1109/eScience.2018.00133","DOIUrl":null,"url":null,"abstract":"With the growing computational complexity of science and the complexity of new and emerging hardware, it is time to re-evaluate the traditional monolithic design of computational codes. One new paradigm is constructing larger scientific computational experiments from the coupling of multiple individual scientific applications, each targeting their own physics, characteristic lengths, and/or scales. We present a framework constructed by leveraging capabilities such as in-memory communications, workflow scheduling on HPC resources, and continuous performance monitoring. This code coupling capability is demonstrated by a fusion science scenario, where differences between the plasma at the edges and at the core of a device have different physical descriptions. This infrastructure not only enables the coupling of the physics components, but it also connects in situ or online analysis, compression, and visualization that accelerate the time between a run and the analysis of the science content. Results from runs on Titan and Cori are presented as a demonstration.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"80 1","pages":"442-452"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Coupling Exascale Multiphysics Applications: Methods and Lessons Learned\",\"authors\":\"J. Choi, Choong-Seock Chang, J. Dominski, S. Klasky, G. Merlo, E. Suchyta, M. Ainsworth, B. Allen, F. Cappello, M. Churchill, Philip E. Davis, S. Di, G. Eisenhauer, S. Ethier, Ian T Foster, Berk Geveci, Hanqi Guo, K. Huck, F. Jenko, Mark Kim, James Kress, S. Ku, Qing Liu, Jeremy S. Logan, A. Malony, Kshitij Mehta, K. Moreland, T. Munson, M. Parashar, T. Peterka, N. Podhorszki, D. Pugmire, O. Tugluk, Ruonan Wang, Ben Whitney, M. Wolf, Chad Wood\",\"doi\":\"10.1109/eScience.2018.00133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing computational complexity of science and the complexity of new and emerging hardware, it is time to re-evaluate the traditional monolithic design of computational codes. One new paradigm is constructing larger scientific computational experiments from the coupling of multiple individual scientific applications, each targeting their own physics, characteristic lengths, and/or scales. We present a framework constructed by leveraging capabilities such as in-memory communications, workflow scheduling on HPC resources, and continuous performance monitoring. This code coupling capability is demonstrated by a fusion science scenario, where differences between the plasma at the edges and at the core of a device have different physical descriptions. This infrastructure not only enables the coupling of the physics components, but it also connects in situ or online analysis, compression, and visualization that accelerate the time between a run and the analysis of the science content. Results from runs on Titan and Cori are presented as a demonstration.\",\"PeriodicalId\":6476,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on e-Science (e-Science)\",\"volume\":\"80 1\",\"pages\":\"442-452\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on e-Science (e-Science)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2018.00133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on e-Science (e-Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2018.00133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

随着科学计算复杂性的增长和新兴硬件的复杂性,是时候重新评估传统的单片计算代码设计了。一个新的范例是通过多个单独的科学应用的耦合来构建更大的科学计算实验,每个应用都针对自己的物理、特征长度和/或尺度。我们提出了一个利用内存通信、HPC资源上的工作流调度和持续性能监控等功能构建的框架。这种代码耦合能力通过一个聚变科学场景来演示,在这个场景中,设备边缘和核心的等离子体之间的差异具有不同的物理描述。该基础设施不仅支持物理组件的耦合,而且还连接了现场或在线分析、压缩和可视化,从而缩短了运行和科学内容分析之间的时间。在Titan和Cori上运行的结果作为演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coupling Exascale Multiphysics Applications: Methods and Lessons Learned
With the growing computational complexity of science and the complexity of new and emerging hardware, it is time to re-evaluate the traditional monolithic design of computational codes. One new paradigm is constructing larger scientific computational experiments from the coupling of multiple individual scientific applications, each targeting their own physics, characteristic lengths, and/or scales. We present a framework constructed by leveraging capabilities such as in-memory communications, workflow scheduling on HPC resources, and continuous performance monitoring. This code coupling capability is demonstrated by a fusion science scenario, where differences between the plasma at the edges and at the core of a device have different physical descriptions. This infrastructure not only enables the coupling of the physics components, but it also connects in situ or online analysis, compression, and visualization that accelerate the time between a run and the analysis of the science content. Results from runs on Titan and Cori are presented as a demonstration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Occam: Software Environment for Creating Reproducible Research Smart Data Scouting in Professional Soccer: Evaluating Passing Performance Based on Position Tracking Data Improving LBFGS Optimizer in PyTorch: Knowledge Transfer from Radio Interferometric Calibration to Machine Learning Nordic Exome Variant Catalogue a Web Resource for Genomic Data Browsing Survey on Research Software Engineering in the Netherlands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1