用分段Bernstein多项式参数化混流式涡轮叶片的有限元结构分析

Heriberto Arias-Rojas, Miguel A. Rodríguez-Velázquez, Ángel Cerriteño-Sánchez, F. Domínguez-Mota, S. Galván-González
{"title":"用分段Bernstein多项式参数化混流式涡轮叶片的有限元结构分析","authors":"Heriberto Arias-Rojas, Miguel A. Rodríguez-Velázquez, Ángel Cerriteño-Sánchez, F. Domínguez-Mota, S. Galván-González","doi":"10.3390/computation11070123","DOIUrl":null,"url":null,"abstract":"Several methodologies have successfully described the runner blade shape as a set of discrete sections joining the hub and shroud, defined by 3D geometrical forms of considerable complexity. This task requires an appropriate parametric approach for its accurate reconstruction. Among them, piecewise Bernstein polynomials have been used to create parametrizations of twisted runner blades by extracting some cross-sectional hydrofoil profiles from reference CAD data to be approximated by such polynomials. Using the interpolating polynomial coefficients as parameters, more profiles are generated by Lagrangian techniques. The generated profiles are then stacked along the spanwise direction of the blade via transfinite interpolation to obtain a smooth and continuous representation of the reference blade. This versatile approach makes the description of a range of different blade shapes possible within the required accuracy and, furthermore, the design of new blade shapes. However, even though it is possible to redefine new blade shapes using the aforementioned parametrization, a remaining question is whether the parametrized blades are suitable as a replacement for the currently used ones. In order to assess the mechanical feasibility of the new shapes, several stages of analysis are required. In this paper, bearing in mind the standard hydraulic test conditions of the hydrofoil test case of the Norwegian Hydropower Center, we present a structural stress–strain analysis of the reparametrization of a Francis blade, thus showing its adequate computational performance in two model tests.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"110 1","pages":"123"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A FEM Structural Analysis of a Francis Turbine Blade Parametrized Using Piecewise Bernstein Polynomials\",\"authors\":\"Heriberto Arias-Rojas, Miguel A. Rodríguez-Velázquez, Ángel Cerriteño-Sánchez, F. Domínguez-Mota, S. Galván-González\",\"doi\":\"10.3390/computation11070123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several methodologies have successfully described the runner blade shape as a set of discrete sections joining the hub and shroud, defined by 3D geometrical forms of considerable complexity. This task requires an appropriate parametric approach for its accurate reconstruction. Among them, piecewise Bernstein polynomials have been used to create parametrizations of twisted runner blades by extracting some cross-sectional hydrofoil profiles from reference CAD data to be approximated by such polynomials. Using the interpolating polynomial coefficients as parameters, more profiles are generated by Lagrangian techniques. The generated profiles are then stacked along the spanwise direction of the blade via transfinite interpolation to obtain a smooth and continuous representation of the reference blade. This versatile approach makes the description of a range of different blade shapes possible within the required accuracy and, furthermore, the design of new blade shapes. However, even though it is possible to redefine new blade shapes using the aforementioned parametrization, a remaining question is whether the parametrized blades are suitable as a replacement for the currently used ones. In order to assess the mechanical feasibility of the new shapes, several stages of analysis are required. In this paper, bearing in mind the standard hydraulic test conditions of the hydrofoil test case of the Norwegian Hydropower Center, we present a structural stress–strain analysis of the reparametrization of a Francis blade, thus showing its adequate computational performance in two model tests.\",\"PeriodicalId\":10526,\"journal\":{\"name\":\"Comput.\",\"volume\":\"110 1\",\"pages\":\"123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11070123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11070123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有几种方法已经成功地将流道叶片的形状描述为连接轮毂和叶冠的一组离散部分,由相当复杂的3D几何形式定义。这项任务需要一种适当的参数化方法来精确地重建它。其中,利用分段Bernstein多项式对扭曲流道叶片进行参数化,从参考CAD数据中提取部分截面水翼型线进行近似。以插值多项式系数为参数,利用拉格朗日方法生成了更多的剖面。然后,通过超限插值将生成的轮廓沿叶片展向叠加,以获得参考叶片的光滑连续表示。这种通用的方法使得在所需的精度范围内描述一系列不同的叶片形状成为可能,此外,还可以设计新的叶片形状。然而,尽管使用上述参数化可以重新定义新的叶片形状,但剩下的问题是参数化叶片是否适合替代当前使用的叶片。为了评估新形状的力学可行性,需要进行几个阶段的分析。本文结合挪威水电中心水翼试验箱的标准水力试验条件,对法兰式叶片的再参数化进行了结构应力-应变分析,在两次模型试验中显示了其足够的计算性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A FEM Structural Analysis of a Francis Turbine Blade Parametrized Using Piecewise Bernstein Polynomials
Several methodologies have successfully described the runner blade shape as a set of discrete sections joining the hub and shroud, defined by 3D geometrical forms of considerable complexity. This task requires an appropriate parametric approach for its accurate reconstruction. Among them, piecewise Bernstein polynomials have been used to create parametrizations of twisted runner blades by extracting some cross-sectional hydrofoil profiles from reference CAD data to be approximated by such polynomials. Using the interpolating polynomial coefficients as parameters, more profiles are generated by Lagrangian techniques. The generated profiles are then stacked along the spanwise direction of the blade via transfinite interpolation to obtain a smooth and continuous representation of the reference blade. This versatile approach makes the description of a range of different blade shapes possible within the required accuracy and, furthermore, the design of new blade shapes. However, even though it is possible to redefine new blade shapes using the aforementioned parametrization, a remaining question is whether the parametrized blades are suitable as a replacement for the currently used ones. In order to assess the mechanical feasibility of the new shapes, several stages of analysis are required. In this paper, bearing in mind the standard hydraulic test conditions of the hydrofoil test case of the Norwegian Hydropower Center, we present a structural stress–strain analysis of the reparametrization of a Francis blade, thus showing its adequate computational performance in two model tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A U-Net Architecture for Inpainting Lightstage Normal Maps Implementing Virtualization on Single-Board Computers: A Case Study on Edge Computing Electrocardiogram Signals Classification Using Deep-Learning-Based Incorporated Convolutional Neural Network and Long Short-Term Memory Framework The Mechanism of Resonant Amplification of One-Dimensional Detonation Propagating in a Non-Uniform Mixture Application of Immersive VR Serious Games in the Treatment of Schizophrenia Negative Symptoms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1