DEUS-PUR宇宙模拟中物质功率谱协方差的宇宙学模型参数依赖性

L. Blot, Pier Stefano Corasaniti, Y. Rasera, S. Agarwal
{"title":"DEUS-PUR宇宙模拟中物质功率谱协方差的宇宙学模型参数依赖性","authors":"L. Blot, Pier Stefano Corasaniti, Y. Rasera, S. Agarwal","doi":"10.1093/mnras/staa3444","DOIUrl":null,"url":null,"abstract":"Future galaxy surveys will provide accurate measurements of the matter power spectrum across an unprecedented range of scales and redshifts. The analysis of these data will require to accurately model the imprint of non-linearities on the matter density field, which induces a non-Gaussian contribution to the data covariance. As the imprint of non-linearities is cosmology dependent, a further complication arises from accounting for the cosmological dependence of the non-Gaussian part of the covariance. Here, we study this using a dedicated suite of N-body simulations, the Dark Energy Universe Simulation - Parallel Universe Runs (DEUS-PUR) $Cosmo$. These consist of 512 realizations for 10 different cosmologies where we vary the matter density $\\Omega_m$, the amplitude of density fluctuations $\\sigma_8$, the reduced Hubble parameter $h$ and a constant dark energy equation of state $w$ by approximately $10\\%$. We use these data to evaluate the first and second derivatives of the power spectrum covariance with respect to a fiducial $\\Lambda$CDM cosmology. We find that the variations can be as large as $150\\%$ depending on the scale, redshift and model parameter considered. Using a Fisher matrix approach, we evaluate the impact of using a covariance estimated at a fiducial model rather than the true underlying cosmology. We find that the estimated $1\\sigma$ errors are affected at approximately $5\\%$, $20\\%$, $50\\%$ and $120\\%$ level when assuming non-fiducial values of $h$, $w$, $\\Omega_m$ and $\\sigma_8$ respectively. These results suggest that the use of cosmology-dependent covariances is key for precision cosmology.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cosmological model parameter dependence of the matter power spectrum covariance from the DEUS-PUR Cosmo simulations\",\"authors\":\"L. Blot, Pier Stefano Corasaniti, Y. Rasera, S. Agarwal\",\"doi\":\"10.1093/mnras/staa3444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future galaxy surveys will provide accurate measurements of the matter power spectrum across an unprecedented range of scales and redshifts. The analysis of these data will require to accurately model the imprint of non-linearities on the matter density field, which induces a non-Gaussian contribution to the data covariance. As the imprint of non-linearities is cosmology dependent, a further complication arises from accounting for the cosmological dependence of the non-Gaussian part of the covariance. Here, we study this using a dedicated suite of N-body simulations, the Dark Energy Universe Simulation - Parallel Universe Runs (DEUS-PUR) $Cosmo$. These consist of 512 realizations for 10 different cosmologies where we vary the matter density $\\\\Omega_m$, the amplitude of density fluctuations $\\\\sigma_8$, the reduced Hubble parameter $h$ and a constant dark energy equation of state $w$ by approximately $10\\\\%$. We use these data to evaluate the first and second derivatives of the power spectrum covariance with respect to a fiducial $\\\\Lambda$CDM cosmology. We find that the variations can be as large as $150\\\\%$ depending on the scale, redshift and model parameter considered. Using a Fisher matrix approach, we evaluate the impact of using a covariance estimated at a fiducial model rather than the true underlying cosmology. We find that the estimated $1\\\\sigma$ errors are affected at approximately $5\\\\%$, $20\\\\%$, $50\\\\%$ and $120\\\\%$ level when assuming non-fiducial values of $h$, $w$, $\\\\Omega_m$ and $\\\\sigma_8$ respectively. These results suggest that the use of cosmology-dependent covariances is key for precision cosmology.\",\"PeriodicalId\":8431,\"journal\":{\"name\":\"arXiv: Cosmology and Nongalactic Astrophysics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/staa3444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa3444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

未来的星系调查将在前所未有的尺度和红移范围内提供物质功率谱的精确测量。对这些数据的分析将需要准确地模拟物质密度场上的非线性印记,这将导致数据协方差的非高斯贡献。由于非线性的印记是宇宙学依赖的,进一步的复杂性来自于对协方差的非高斯部分的宇宙学依赖的计算。在这里,我们使用一套专门的n体模拟来研究这一点,暗能量宇宙模拟-平行宇宙运行(DEUS-PUR) $Cosmo$。这些包括10种不同宇宙学的512种实现,其中我们改变了物质密度$\Omega_m$,密度波动幅度$\sigma_8$,简化的哈勃参数$h$和恒定的暗能量状态方程$w$,大约$10\%$。我们使用这些数据来评估相对于基准$\Lambda$ CDM宇宙学的功率谱协方差的一阶和二阶导数。我们发现,根据所考虑的尺度、红移和模型参数,变化可以大到$150\%$。使用Fisher矩阵方法,我们评估使用在基础模型中估计的协方差而不是真正的潜在宇宙学的影响。我们发现,当假设$h$、$w$、$\Omega_m$和$\sigma_8$的非基准值时,估计的$1\sigma$误差分别在$5\%$、$20\%$、$50\%$和$120\%$水平上受到影响。这些结果表明,使用与宇宙学相关的协方差是精确宇宙学的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cosmological model parameter dependence of the matter power spectrum covariance from the DEUS-PUR Cosmo simulations
Future galaxy surveys will provide accurate measurements of the matter power spectrum across an unprecedented range of scales and redshifts. The analysis of these data will require to accurately model the imprint of non-linearities on the matter density field, which induces a non-Gaussian contribution to the data covariance. As the imprint of non-linearities is cosmology dependent, a further complication arises from accounting for the cosmological dependence of the non-Gaussian part of the covariance. Here, we study this using a dedicated suite of N-body simulations, the Dark Energy Universe Simulation - Parallel Universe Runs (DEUS-PUR) $Cosmo$. These consist of 512 realizations for 10 different cosmologies where we vary the matter density $\Omega_m$, the amplitude of density fluctuations $\sigma_8$, the reduced Hubble parameter $h$ and a constant dark energy equation of state $w$ by approximately $10\%$. We use these data to evaluate the first and second derivatives of the power spectrum covariance with respect to a fiducial $\Lambda$CDM cosmology. We find that the variations can be as large as $150\%$ depending on the scale, redshift and model parameter considered. Using a Fisher matrix approach, we evaluate the impact of using a covariance estimated at a fiducial model rather than the true underlying cosmology. We find that the estimated $1\sigma$ errors are affected at approximately $5\%$, $20\%$, $50\%$ and $120\%$ level when assuming non-fiducial values of $h$, $w$, $\Omega_m$ and $\sigma_8$ respectively. These results suggest that the use of cosmology-dependent covariances is key for precision cosmology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Primordial Black Holes: from Theory to Gravitational Wave Observations Chasing the Tail of Cosmic Reionization with Dark Gap Statistics in the Ly$α$ Forest over $5 < z < 6$ Hubble tension and absolute constraints on the local Hubble parameter. Towards an Optimal Estimation of Cosmological Parameters with the Wavelet Scattering Transform Assessment of the cosmic distance duality relation using Gaussian process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1