M.G.I. Sandunika, P.N. Nanayakkara, M. Perera, Kumari Ranjana, K. Madusanka, A. Kulasekera, D. Chathuranga
{"title":"一种新型3d打印拳头康复软执行器的设计","authors":"M.G.I. Sandunika, P.N. Nanayakkara, M. Perera, Kumari Ranjana, K. Madusanka, A. Kulasekera, D. Chathuranga","doi":"10.1109/MERCon52712.2021.9525711","DOIUrl":null,"url":null,"abstract":"This paper presents a novel 3D-printed, fold-based, soft pneumatic actuator for hand rehabilitation of patients with clenched fist deformity. Actuator design is specially focused on following the orientation of a clenched fist. The proposed actuator provides active extension for hand rehabilitative training. Actuator design considerations, fabrication method and the appropriate 3D printing parameters are specified in the paper. Experiments were conducted to characterize the performance of the actuator in terms of range of motion (ROM) and tip force. The bending trajectories, ROM of proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints were analyzed under different pressure levels. Tip force capabilities of the actuator is quantified using a blocked force test. The actuator shows maximum DIP and PIP angles (ROM) of 176° and 163° respectively at 300 kPa (Gauge). Also, at the same pressure, it has shown a maximum tip force of 1.8 N. The actuator shows minimal hysteresis and the potential for use in a future glove development for clenched fist rehabilitation.","PeriodicalId":6855,"journal":{"name":"2021 Moratuwa Engineering Research Conference (MERCon)","volume":"54 1","pages":"196-201"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of a Novel 3D-Printed Soft Actuator for Clenched Fist Rehabilitation\",\"authors\":\"M.G.I. Sandunika, P.N. Nanayakkara, M. Perera, Kumari Ranjana, K. Madusanka, A. Kulasekera, D. Chathuranga\",\"doi\":\"10.1109/MERCon52712.2021.9525711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel 3D-printed, fold-based, soft pneumatic actuator for hand rehabilitation of patients with clenched fist deformity. Actuator design is specially focused on following the orientation of a clenched fist. The proposed actuator provides active extension for hand rehabilitative training. Actuator design considerations, fabrication method and the appropriate 3D printing parameters are specified in the paper. Experiments were conducted to characterize the performance of the actuator in terms of range of motion (ROM) and tip force. The bending trajectories, ROM of proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints were analyzed under different pressure levels. Tip force capabilities of the actuator is quantified using a blocked force test. The actuator shows maximum DIP and PIP angles (ROM) of 176° and 163° respectively at 300 kPa (Gauge). Also, at the same pressure, it has shown a maximum tip force of 1.8 N. The actuator shows minimal hysteresis and the potential for use in a future glove development for clenched fist rehabilitation.\",\"PeriodicalId\":6855,\"journal\":{\"name\":\"2021 Moratuwa Engineering Research Conference (MERCon)\",\"volume\":\"54 1\",\"pages\":\"196-201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Moratuwa Engineering Research Conference (MERCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MERCon52712.2021.9525711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCon52712.2021.9525711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a Novel 3D-Printed Soft Actuator for Clenched Fist Rehabilitation
This paper presents a novel 3D-printed, fold-based, soft pneumatic actuator for hand rehabilitation of patients with clenched fist deformity. Actuator design is specially focused on following the orientation of a clenched fist. The proposed actuator provides active extension for hand rehabilitative training. Actuator design considerations, fabrication method and the appropriate 3D printing parameters are specified in the paper. Experiments were conducted to characterize the performance of the actuator in terms of range of motion (ROM) and tip force. The bending trajectories, ROM of proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints were analyzed under different pressure levels. Tip force capabilities of the actuator is quantified using a blocked force test. The actuator shows maximum DIP and PIP angles (ROM) of 176° and 163° respectively at 300 kPa (Gauge). Also, at the same pressure, it has shown a maximum tip force of 1.8 N. The actuator shows minimal hysteresis and the potential for use in a future glove development for clenched fist rehabilitation.