{"title":"故障恢复","authors":"B. Whitby","doi":"10.1308/1741937042360373","DOIUrl":null,"url":null,"abstract":"Regulation of immune responses through local catabolic depletion of tryptophan (Trp) was first identified in studies of the maternal T cell response to the fetus. This pathway, which is controlled by the enzyme indoleamine 2,3-dioxygenase (IDO), has since been identified in a variety of immunological settings. Platten et al. now find that IDO-mediated Trp catabolism also contributes during therapy of a mouse model of multiple sclerosis. By using a form of antigen termed an altered peptide ligand, T cell responses were prevented from causing inflammation and nervous system pathology, and this effect corresponded with the induction of IDO. Naturally occurring metabolites and a synthetic derivative of the IDO pathway inhibited T cell proliferation and activation of antigen-presenting cells. Remarkably, paralyzed mice recovered after being fed the synthetic derivative. M. Platten, P. P. Ho, S. Youssef, P. Fontoura, H. Garren, E. M. Hur, R. Gupta, L. Y. Lee, B. A. Kidd, W. H. Robinson, R. A. Sobel, M. L. Selley, L. Steinman, Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310, 850-855 (2005). [Abstract] [Full Text]","PeriodicalId":21619,"journal":{"name":"Science's STKE","volume":"14 1","pages":"tw398 - tw398"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breakdown to Recovery\",\"authors\":\"B. Whitby\",\"doi\":\"10.1308/1741937042360373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regulation of immune responses through local catabolic depletion of tryptophan (Trp) was first identified in studies of the maternal T cell response to the fetus. This pathway, which is controlled by the enzyme indoleamine 2,3-dioxygenase (IDO), has since been identified in a variety of immunological settings. Platten et al. now find that IDO-mediated Trp catabolism also contributes during therapy of a mouse model of multiple sclerosis. By using a form of antigen termed an altered peptide ligand, T cell responses were prevented from causing inflammation and nervous system pathology, and this effect corresponded with the induction of IDO. Naturally occurring metabolites and a synthetic derivative of the IDO pathway inhibited T cell proliferation and activation of antigen-presenting cells. Remarkably, paralyzed mice recovered after being fed the synthetic derivative. M. Platten, P. P. Ho, S. Youssef, P. Fontoura, H. Garren, E. M. Hur, R. Gupta, L. Y. Lee, B. A. Kidd, W. H. Robinson, R. A. Sobel, M. L. Selley, L. Steinman, Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310, 850-855 (2005). [Abstract] [Full Text]\",\"PeriodicalId\":21619,\"journal\":{\"name\":\"Science's STKE\",\"volume\":\"14 1\",\"pages\":\"tw398 - tw398\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science's STKE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1308/1741937042360373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science's STKE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1308/1741937042360373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
通过局部色氨酸(Trp)的分解代谢耗竭来调节免疫反应是在母体T细胞对胎儿反应的研究中首次发现的。这种途径是由吲哚胺2,3-双加氧酶(IDO)控制的,已经在各种免疫学环境中被发现。Platten等人现在发现ido介导的色氨酸分解代谢在多发性硬化症小鼠模型的治疗过程中也起作用。通过使用一种被称为改变肽配体的抗原形式,T细胞反应被阻止引起炎症和神经系统病理,这种效果与IDO的诱导相对应。天然存在的代谢物和IDO途径的合成衍生物抑制T细胞增殖和抗原呈递细胞的激活。值得注意的是,瘫痪小鼠在喂食合成衍生物后恢复了健康。M. Platten, P. P. Ho, S. Youssef, P. Fontoura, H. Garren, E. M. Hur, R. Gupta, L. Y. Lee, B. a . Kidd, W. H. Robinson, R. a . Sobel, M. L. Selley, L. Steinman,合成色氨酸代谢物治疗自身免疫性神经炎症。科学31,850-855(2005)。【摘要】【全文】
Regulation of immune responses through local catabolic depletion of tryptophan (Trp) was first identified in studies of the maternal T cell response to the fetus. This pathway, which is controlled by the enzyme indoleamine 2,3-dioxygenase (IDO), has since been identified in a variety of immunological settings. Platten et al. now find that IDO-mediated Trp catabolism also contributes during therapy of a mouse model of multiple sclerosis. By using a form of antigen termed an altered peptide ligand, T cell responses were prevented from causing inflammation and nervous system pathology, and this effect corresponded with the induction of IDO. Naturally occurring metabolites and a synthetic derivative of the IDO pathway inhibited T cell proliferation and activation of antigen-presenting cells. Remarkably, paralyzed mice recovered after being fed the synthetic derivative. M. Platten, P. P. Ho, S. Youssef, P. Fontoura, H. Garren, E. M. Hur, R. Gupta, L. Y. Lee, B. A. Kidd, W. H. Robinson, R. A. Sobel, M. L. Selley, L. Steinman, Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310, 850-855 (2005). [Abstract] [Full Text]