{"title":"负载型氧化钼单层催化剂的拉曼光谱研究","authors":"G. Mestl, T. K. Srinivasan","doi":"10.1080/01614949808007114","DOIUrl":null,"url":null,"abstract":"Abstract Oxides of the group VIb metals (Cr, Mo, W) and oxides of vanadium, rhenium, and niobium supported on a second high-surface-area metal oxide such as Al2O3, TiO2, Si02, ZrO2, and so forth are recognized as industrially important catalysts or catalyst precursors for various reactions [1–11], These materials frequently have been described as so-called monolayer catalysts based on a structural model which assumed spreading of the active oxide over the support surface. These catalysts have been investigated by a variety of techniques, conventional bulk sampling techniques as well as by surface-sensitive electron and ion spectroscopies, in an attempt to elucidate the nature of the catalyst surface species, and to study the coordination environment of the active metal center(s). Electronic spectroscopy gives rise to broad bands and the spectra are less informative than vibrational spectra. In addition, although techniques such as Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS...","PeriodicalId":50986,"journal":{"name":"Catalysis Reviews-Science and Engineering","volume":"168 1","pages":"451-570"},"PeriodicalIF":9.3000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"319","resultStr":"{\"title\":\"Raman Spectroscopy of Monolayer-Type Catalysts: Supported Molybdenum Oxides\",\"authors\":\"G. Mestl, T. K. Srinivasan\",\"doi\":\"10.1080/01614949808007114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Oxides of the group VIb metals (Cr, Mo, W) and oxides of vanadium, rhenium, and niobium supported on a second high-surface-area metal oxide such as Al2O3, TiO2, Si02, ZrO2, and so forth are recognized as industrially important catalysts or catalyst precursors for various reactions [1–11], These materials frequently have been described as so-called monolayer catalysts based on a structural model which assumed spreading of the active oxide over the support surface. These catalysts have been investigated by a variety of techniques, conventional bulk sampling techniques as well as by surface-sensitive electron and ion spectroscopies, in an attempt to elucidate the nature of the catalyst surface species, and to study the coordination environment of the active metal center(s). Electronic spectroscopy gives rise to broad bands and the spectra are less informative than vibrational spectra. In addition, although techniques such as Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS...\",\"PeriodicalId\":50986,\"journal\":{\"name\":\"Catalysis Reviews-Science and Engineering\",\"volume\":\"168 1\",\"pages\":\"451-570\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"1998-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"319\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Reviews-Science and Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/01614949808007114\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Reviews-Science and Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/01614949808007114","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Raman Spectroscopy of Monolayer-Type Catalysts: Supported Molybdenum Oxides
Abstract Oxides of the group VIb metals (Cr, Mo, W) and oxides of vanadium, rhenium, and niobium supported on a second high-surface-area metal oxide such as Al2O3, TiO2, Si02, ZrO2, and so forth are recognized as industrially important catalysts or catalyst precursors for various reactions [1–11], These materials frequently have been described as so-called monolayer catalysts based on a structural model which assumed spreading of the active oxide over the support surface. These catalysts have been investigated by a variety of techniques, conventional bulk sampling techniques as well as by surface-sensitive electron and ion spectroscopies, in an attempt to elucidate the nature of the catalyst surface species, and to study the coordination environment of the active metal center(s). Electronic spectroscopy gives rise to broad bands and the spectra are less informative than vibrational spectra. In addition, although techniques such as Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS...
期刊介绍:
Catalysis Reviews is dedicated to fostering interdisciplinary perspectives in catalytic science and engineering, catering to a global audience of industrial and academic researchers. This journal serves as a bridge between the realms of heterogeneous, homogeneous, and bio-catalysis, providing a crucial and critical evaluation of the current state of catalytic science and engineering. Published topics encompass advances in technology and theory, engineering and chemical aspects of catalytic reactions, reactor design, computer models, analytical tools, and statistical evaluations.