PIDGIN:使用网络文本作为中间语言的本体对齐

D. Wijaya, P. Talukdar, Tom Michael Mitchell
{"title":"PIDGIN:使用网络文本作为中间语言的本体对齐","authors":"D. Wijaya, P. Talukdar, Tom Michael Mitchell","doi":"10.1145/2505515.2505559","DOIUrl":null,"url":null,"abstract":"The problem of aligning ontologies and database schemas across different knowledge bases and databases is fundamental to knowledge management problems, including the problem of integrating the disparate knowledge sources that form the semantic web's Linked Data [5]. We present a novel approach to this ontology alignment problem that employs a very large natural language text corpus as an interlingua to relate different knowledge bases (KBs). The result is a scalable and robust method (PIDGIN) that aligns relations and categories across different KBs by analyzing both (1) shared relation instances across these KBs, and (2) the verb phrases in the text instantiations of these relation instances. Experiments with PIDGIN demonstrate its superior performance when aligning ontologies across large existing KBs including NELL, Yago and Freebase. Furthermore, we show that in addition to aligning ontologies, PIDGIN can automatically learn from text, the verb phrases to identify relations, and can also type the arguments of relations of different KBs.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"PIDGIN: ontology alignment using web text as interlingua\",\"authors\":\"D. Wijaya, P. Talukdar, Tom Michael Mitchell\",\"doi\":\"10.1145/2505515.2505559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of aligning ontologies and database schemas across different knowledge bases and databases is fundamental to knowledge management problems, including the problem of integrating the disparate knowledge sources that form the semantic web's Linked Data [5]. We present a novel approach to this ontology alignment problem that employs a very large natural language text corpus as an interlingua to relate different knowledge bases (KBs). The result is a scalable and robust method (PIDGIN) that aligns relations and categories across different KBs by analyzing both (1) shared relation instances across these KBs, and (2) the verb phrases in the text instantiations of these relation instances. Experiments with PIDGIN demonstrate its superior performance when aligning ontologies across large existing KBs including NELL, Yago and Freebase. Furthermore, we show that in addition to aligning ontologies, PIDGIN can automatically learn from text, the verb phrases to identify relations, and can also type the arguments of relations of different KBs.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2505559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

跨不同的知识库和数据库调整本体和数据库模式的问题是知识管理问题的基础,包括整合构成语义网关联数据的不同知识来源的问题[5]。我们提出了一种新的方法来解决这个本体对齐问题,该方法使用一个非常大的自然语言文本语料库作为连接不同知识库(KBs)的中间语言。结果是一种可扩展且健壮的方法(PIDGIN),它通过分析(1)这些KBs之间的共享关系实例和(2)这些关系实例的文本实例中的动词短语来对齐不同KBs之间的关系和类别。使用PIDGIN进行的实验证明了它在跨大型现有KBs(包括NELL、Yago和Freebase)对齐本体时的优越性能。此外,我们表明,除了对齐本体之外,PIDGIN还可以自动从文本、动词短语中学习以识别关系,并且还可以键入不同KBs关系的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PIDGIN: ontology alignment using web text as interlingua
The problem of aligning ontologies and database schemas across different knowledge bases and databases is fundamental to knowledge management problems, including the problem of integrating the disparate knowledge sources that form the semantic web's Linked Data [5]. We present a novel approach to this ontology alignment problem that employs a very large natural language text corpus as an interlingua to relate different knowledge bases (KBs). The result is a scalable and robust method (PIDGIN) that aligns relations and categories across different KBs by analyzing both (1) shared relation instances across these KBs, and (2) the verb phrases in the text instantiations of these relation instances. Experiments with PIDGIN demonstrate its superior performance when aligning ontologies across large existing KBs including NELL, Yago and Freebase. Furthermore, we show that in addition to aligning ontologies, PIDGIN can automatically learn from text, the verb phrases to identify relations, and can also type the arguments of relations of different KBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring XML data is as easy as using maps Mining-based compression approach of propositional formulae Flexible and dynamic compromises for effective recommendations Efficient parsing-based search over structured data Recommendation via user's personality and social contextual
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1