Shijie Dai, S. Li, Wenbin Ji, Ruiqin Wang, Shuyuan Liu
{"title":"基于LuGre模型的机器人气动末端执行器自适应摩擦补偿控制","authors":"Shijie Dai, S. Li, Wenbin Ji, Ruiqin Wang, Shuyuan Liu","doi":"10.1108/ir-01-2023-0010","DOIUrl":null,"url":null,"abstract":"\nPurpose\nConsidering the response lag and viscous slip oscillation of the system caused by cylinder piston friction during automatic polishing of aero-engine blades by a robotic pneumatic end-effector, the purpose of this study is to propose a constant force control method with adaptive friction compensation.\n\n\nDesign/methodology/approach\nFirst, the mathematical model of the pneumatic end-effector is established based on the continuous LuGre model, and the static parameters of the LuGre model are identified to verify the necessity of friction compensation. Second, aiming at the problems of difficult identification of dynamic parameters and unmeasurable internal states in the LuGre model, the parameter adaptive law and friction state observer are designed to estimate these parameters online. Finally, an adaptive friction compensation backstepping controller is designed to improve the response speed and polishing force control accuracy of the system.\n\n\nFindings\nSimulation and experimental results show that, compared with proportion integration differentiation, extended state observer-based active disturbance rejection controller and integral sliding mode controller, the proposed method can quickly and effectively suppress the polishing force fluctuation caused by nonlinear friction and significantly improve the blade quality.\n\n\nOriginality/value\nThe pneumatic force control method combining backstepping control with the friction adaptive compensation based on LuGre friction model is studied, which effectively suppresses the fluctuation of normal polishing force.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":"13 1","pages":"848-860"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive friction compensation control of robotic pneumatic end-effector based on LuGre model\",\"authors\":\"Shijie Dai, S. Li, Wenbin Ji, Ruiqin Wang, Shuyuan Liu\",\"doi\":\"10.1108/ir-01-2023-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nConsidering the response lag and viscous slip oscillation of the system caused by cylinder piston friction during automatic polishing of aero-engine blades by a robotic pneumatic end-effector, the purpose of this study is to propose a constant force control method with adaptive friction compensation.\\n\\n\\nDesign/methodology/approach\\nFirst, the mathematical model of the pneumatic end-effector is established based on the continuous LuGre model, and the static parameters of the LuGre model are identified to verify the necessity of friction compensation. Second, aiming at the problems of difficult identification of dynamic parameters and unmeasurable internal states in the LuGre model, the parameter adaptive law and friction state observer are designed to estimate these parameters online. Finally, an adaptive friction compensation backstepping controller is designed to improve the response speed and polishing force control accuracy of the system.\\n\\n\\nFindings\\nSimulation and experimental results show that, compared with proportion integration differentiation, extended state observer-based active disturbance rejection controller and integral sliding mode controller, the proposed method can quickly and effectively suppress the polishing force fluctuation caused by nonlinear friction and significantly improve the blade quality.\\n\\n\\nOriginality/value\\nThe pneumatic force control method combining backstepping control with the friction adaptive compensation based on LuGre friction model is studied, which effectively suppresses the fluctuation of normal polishing force.\\n\",\"PeriodicalId\":54987,\"journal\":{\"name\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"volume\":\"13 1\",\"pages\":\"848-860\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-01-2023-0010\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-01-2023-0010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Adaptive friction compensation control of robotic pneumatic end-effector based on LuGre model
Purpose
Considering the response lag and viscous slip oscillation of the system caused by cylinder piston friction during automatic polishing of aero-engine blades by a robotic pneumatic end-effector, the purpose of this study is to propose a constant force control method with adaptive friction compensation.
Design/methodology/approach
First, the mathematical model of the pneumatic end-effector is established based on the continuous LuGre model, and the static parameters of the LuGre model are identified to verify the necessity of friction compensation. Second, aiming at the problems of difficult identification of dynamic parameters and unmeasurable internal states in the LuGre model, the parameter adaptive law and friction state observer are designed to estimate these parameters online. Finally, an adaptive friction compensation backstepping controller is designed to improve the response speed and polishing force control accuracy of the system.
Findings
Simulation and experimental results show that, compared with proportion integration differentiation, extended state observer-based active disturbance rejection controller and integral sliding mode controller, the proposed method can quickly and effectively suppress the polishing force fluctuation caused by nonlinear friction and significantly improve the blade quality.
Originality/value
The pneumatic force control method combining backstepping control with the friction adaptive compensation based on LuGre friction model is studied, which effectively suppresses the fluctuation of normal polishing force.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.