{"title":"(环己烷+氯仿)(g)和(苯+氯仿)(g)在353.2 ~ 423.2 K温度下的过量摩尔焓","authors":"C. Wormald, P. Johnson","doi":"10.1039/A708601F","DOIUrl":null,"url":null,"abstract":"A flow-mixing calorimeter has been used to measure the excess molar enthalpy HmE of (cyclohexane+chloroform)(g) and (benzene+chloroform)(g) at standard atmospheric pressure over the temperature range 353.2–423.2 K. The non-ideality of the cyclohexane and benzene was fitted using the Kihara potential, and that of the chloroform using the Stockmayer potential. Cross-terms were calculated using the equation e12=(1-k12)(e11e22)1/2 and to fit the measurements on (cyclohexane+chloroform)(g) the value (1-k12)=0.965 was needed. This value was used to calculate HmE for (benzene+chloroform)(g), and the calculated values were found to be positive and to be similar to those for (cyclohexane+chloroform)(g). However, the experimental values are negative, and about 35 J mol-1 below the values for (cyclohexane+chloroform)(g). The difference between the calculated and experimental values was described in terms of a quasi-chemical model that, for the benzene–chloroform interaction, yielded a value of the equilibrium constant K12(298.15 K)=0.373 MPa-1 and an enthalpy of association ΔH12=-(16.1±2) kJ mol-1. This value of ΔH12 is attributed to a charge transfer between the benzene and the chloroform that is not present in the cyclohexane–chloroform interaction.","PeriodicalId":17286,"journal":{"name":"Journal of the Chemical Society, Faraday Transactions","volume":"11 1","pages":"1267-1270"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Benzene–chloroform association Excess molar enthalpy of (cyclohexane+chloroform)(g) and (benzene+chloroform)(g) at temperatures from 353.2 to 423.2 K\",\"authors\":\"C. Wormald, P. Johnson\",\"doi\":\"10.1039/A708601F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A flow-mixing calorimeter has been used to measure the excess molar enthalpy HmE of (cyclohexane+chloroform)(g) and (benzene+chloroform)(g) at standard atmospheric pressure over the temperature range 353.2–423.2 K. The non-ideality of the cyclohexane and benzene was fitted using the Kihara potential, and that of the chloroform using the Stockmayer potential. Cross-terms were calculated using the equation e12=(1-k12)(e11e22)1/2 and to fit the measurements on (cyclohexane+chloroform)(g) the value (1-k12)=0.965 was needed. This value was used to calculate HmE for (benzene+chloroform)(g), and the calculated values were found to be positive and to be similar to those for (cyclohexane+chloroform)(g). However, the experimental values are negative, and about 35 J mol-1 below the values for (cyclohexane+chloroform)(g). The difference between the calculated and experimental values was described in terms of a quasi-chemical model that, for the benzene–chloroform interaction, yielded a value of the equilibrium constant K12(298.15 K)=0.373 MPa-1 and an enthalpy of association ΔH12=-(16.1±2) kJ mol-1. This value of ΔH12 is attributed to a charge transfer between the benzene and the chloroform that is not present in the cyclohexane–chloroform interaction.\",\"PeriodicalId\":17286,\"journal\":{\"name\":\"Journal of the Chemical Society, Faraday Transactions\",\"volume\":\"11 1\",\"pages\":\"1267-1270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Chemical Society, Faraday Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/A708601F\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Chemical Society, Faraday Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/A708601F","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Benzene–chloroform association Excess molar enthalpy of (cyclohexane+chloroform)(g) and (benzene+chloroform)(g) at temperatures from 353.2 to 423.2 K
A flow-mixing calorimeter has been used to measure the excess molar enthalpy HmE of (cyclohexane+chloroform)(g) and (benzene+chloroform)(g) at standard atmospheric pressure over the temperature range 353.2–423.2 K. The non-ideality of the cyclohexane and benzene was fitted using the Kihara potential, and that of the chloroform using the Stockmayer potential. Cross-terms were calculated using the equation e12=(1-k12)(e11e22)1/2 and to fit the measurements on (cyclohexane+chloroform)(g) the value (1-k12)=0.965 was needed. This value was used to calculate HmE for (benzene+chloroform)(g), and the calculated values were found to be positive and to be similar to those for (cyclohexane+chloroform)(g). However, the experimental values are negative, and about 35 J mol-1 below the values for (cyclohexane+chloroform)(g). The difference between the calculated and experimental values was described in terms of a quasi-chemical model that, for the benzene–chloroform interaction, yielded a value of the equilibrium constant K12(298.15 K)=0.373 MPa-1 and an enthalpy of association ΔH12=-(16.1±2) kJ mol-1. This value of ΔH12 is attributed to a charge transfer between the benzene and the chloroform that is not present in the cyclohexane–chloroform interaction.