{"title":"控制原子定向运动和自旋轨道耦合原子在光学晶格中的二阶隧穿","authors":"Xiaobing Luo, Zhao-Yun Zeng, Yu Guo, Baiyuan Yang, Jinpeng Xiao, Lei Li, Chao Kong, Ai-xi Chen","doi":"10.1103/PHYSREVA.103.043315","DOIUrl":null,"url":null,"abstract":"We theoretically explore the tunneling dynamics and dynamical localization (DL) for the Bose-Hubbard (BH) model of a single spin-orbit-coupled atom trapped in an optical lattice subjected to lattice shaking and to time-periodic Zeeman field. By means of analytical and numerical methods, we demonstrate that the spin-orbit (SO) coupling adds some new results to the DL phenomenon in both multiphoton resonance and far-off-resonance parameter regimes. When the driving frequency is resonant with the static Zeeman field (multi-photon resonances), we obtain an unexpected new DL phenomenon where the single SO-coupled atom is restricted to making perfect two-site Rabi oscillation accompanied by spin flipping. By using the unconventional DL phenomenon, we are able to generate a ratchetlike effect which enables directed atomic motion towards different directions and accompanies periodic spin-flipping under the action of SO coupling. For the far-off-resonance case, we show that by suppressing the usual inter-site tunneling alone, it is possible to realize a type of spin-conserving second-order tunneling between next-nearest-neighboring sites, which is not accessible in the conventional lattice system without SO coupling. We also show that simultaneous controls of the usual inter-site tunneling and the SO-coupling-related second-order-tunneling are necessary for quasienergies flatness (collapse) and DL to exist. These results may be relevant to potential applications such as spin-based quantum information processing and design of novel spintronics devices.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Controlling directed atomic motion and second-order tunneling of a spin-orbit-coupled atom in optical lattices\",\"authors\":\"Xiaobing Luo, Zhao-Yun Zeng, Yu Guo, Baiyuan Yang, Jinpeng Xiao, Lei Li, Chao Kong, Ai-xi Chen\",\"doi\":\"10.1103/PHYSREVA.103.043315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We theoretically explore the tunneling dynamics and dynamical localization (DL) for the Bose-Hubbard (BH) model of a single spin-orbit-coupled atom trapped in an optical lattice subjected to lattice shaking and to time-periodic Zeeman field. By means of analytical and numerical methods, we demonstrate that the spin-orbit (SO) coupling adds some new results to the DL phenomenon in both multiphoton resonance and far-off-resonance parameter regimes. When the driving frequency is resonant with the static Zeeman field (multi-photon resonances), we obtain an unexpected new DL phenomenon where the single SO-coupled atom is restricted to making perfect two-site Rabi oscillation accompanied by spin flipping. By using the unconventional DL phenomenon, we are able to generate a ratchetlike effect which enables directed atomic motion towards different directions and accompanies periodic spin-flipping under the action of SO coupling. For the far-off-resonance case, we show that by suppressing the usual inter-site tunneling alone, it is possible to realize a type of spin-conserving second-order tunneling between next-nearest-neighboring sites, which is not accessible in the conventional lattice system without SO coupling. We also show that simultaneous controls of the usual inter-site tunneling and the SO-coupling-related second-order-tunneling are necessary for quasienergies flatness (collapse) and DL to exist. These results may be relevant to potential applications such as spin-based quantum information processing and design of novel spintronics devices.\",\"PeriodicalId\":8838,\"journal\":{\"name\":\"arXiv: Quantum Gases\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVA.103.043315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVA.103.043315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Controlling directed atomic motion and second-order tunneling of a spin-orbit-coupled atom in optical lattices
We theoretically explore the tunneling dynamics and dynamical localization (DL) for the Bose-Hubbard (BH) model of a single spin-orbit-coupled atom trapped in an optical lattice subjected to lattice shaking and to time-periodic Zeeman field. By means of analytical and numerical methods, we demonstrate that the spin-orbit (SO) coupling adds some new results to the DL phenomenon in both multiphoton resonance and far-off-resonance parameter regimes. When the driving frequency is resonant with the static Zeeman field (multi-photon resonances), we obtain an unexpected new DL phenomenon where the single SO-coupled atom is restricted to making perfect two-site Rabi oscillation accompanied by spin flipping. By using the unconventional DL phenomenon, we are able to generate a ratchetlike effect which enables directed atomic motion towards different directions and accompanies periodic spin-flipping under the action of SO coupling. For the far-off-resonance case, we show that by suppressing the usual inter-site tunneling alone, it is possible to realize a type of spin-conserving second-order tunneling between next-nearest-neighboring sites, which is not accessible in the conventional lattice system without SO coupling. We also show that simultaneous controls of the usual inter-site tunneling and the SO-coupling-related second-order-tunneling are necessary for quasienergies flatness (collapse) and DL to exist. These results may be relevant to potential applications such as spin-based quantum information processing and design of novel spintronics devices.