{"title":"分析山水区Pikohidro电能的潜力,并通过利用Joule Thief系列来增加电力","authors":"A. Soleh, Amir Supriyanto, Arif Surtono","doi":"10.23960/JEMIT.V1I3.32","DOIUrl":null,"url":null,"abstract":"The research about picohydro power plant system has been developed in recent years. However, there is a problem in output power when using too small water debit on it. Output power can improved with a generator module and joule thief module. The generator module uses a turbine that the diameter is 4 cm to drive a permanent magnet generator while the joule thief module consists of a charger controller to control charging process of battery, 3200 mAh lithium-ion battery for storing electric power generated by the generator and a joule thief circuit to increase the electrical power that stored in the battery. This device has been tested by using 7 variations of water debit that is 0.06 liters/second, 0.066 liters/second, 0.071 liters/second, 0.077 liters/second, 0.093 liters/second, 0.138 liters/second, and 0.14 liters/second. The results showed that the increasement of power generated when water debit are increased. The maximum power generated in this power generation system is 7.75 W and its able to supply power for LED lights 220 V 3 W for 165 minutes.","PeriodicalId":15738,"journal":{"name":"Journal of Energy, Material, and Instrumentation Technology","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Potensi Energi Listrik Pikohidro dari Sumber Air Pegunungan Serta Upaya Peningkatan Daya Listrik dengan Memanfaatkan Rangkaian Joule Thief\",\"authors\":\"A. Soleh, Amir Supriyanto, Arif Surtono\",\"doi\":\"10.23960/JEMIT.V1I3.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research about picohydro power plant system has been developed in recent years. However, there is a problem in output power when using too small water debit on it. Output power can improved with a generator module and joule thief module. The generator module uses a turbine that the diameter is 4 cm to drive a permanent magnet generator while the joule thief module consists of a charger controller to control charging process of battery, 3200 mAh lithium-ion battery for storing electric power generated by the generator and a joule thief circuit to increase the electrical power that stored in the battery. This device has been tested by using 7 variations of water debit that is 0.06 liters/second, 0.066 liters/second, 0.071 liters/second, 0.077 liters/second, 0.093 liters/second, 0.138 liters/second, and 0.14 liters/second. The results showed that the increasement of power generated when water debit are increased. The maximum power generated in this power generation system is 7.75 W and its able to supply power for LED lights 220 V 3 W for 165 minutes.\",\"PeriodicalId\":15738,\"journal\":{\"name\":\"Journal of Energy, Material, and Instrumentation Technology\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy, Material, and Instrumentation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23960/JEMIT.V1I3.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy, Material, and Instrumentation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23960/JEMIT.V1I3.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analisis Potensi Energi Listrik Pikohidro dari Sumber Air Pegunungan Serta Upaya Peningkatan Daya Listrik dengan Memanfaatkan Rangkaian Joule Thief
The research about picohydro power plant system has been developed in recent years. However, there is a problem in output power when using too small water debit on it. Output power can improved with a generator module and joule thief module. The generator module uses a turbine that the diameter is 4 cm to drive a permanent magnet generator while the joule thief module consists of a charger controller to control charging process of battery, 3200 mAh lithium-ion battery for storing electric power generated by the generator and a joule thief circuit to increase the electrical power that stored in the battery. This device has been tested by using 7 variations of water debit that is 0.06 liters/second, 0.066 liters/second, 0.071 liters/second, 0.077 liters/second, 0.093 liters/second, 0.138 liters/second, and 0.14 liters/second. The results showed that the increasement of power generated when water debit are increased. The maximum power generated in this power generation system is 7.75 W and its able to supply power for LED lights 220 V 3 W for 165 minutes.