{"title":"维拉帕米诱导的燕麦幼苗离子通量动力学","authors":"Olga Babourina, S. Shabala, I. Newman","doi":"10.1071/PP99182","DOIUrl":null,"url":null,"abstract":"Verapamil application in ion transport studies on plant cells is widespread; however, the mechanism of its action is still poorly understood. Net flux of Ca 2+ , K + , Na + , H + and Cl – were measured in solution around oat seedlings using the non-invasive ion-selective microelectrode MIFE technique. The verapamil effect on intact plant tissues was a distinct immediate influx of monovalent cations, H + , K + or Na + . Pre-treatment with tetraethyl-ammonium, Cs + , Ba 2+ or Ca 2+ did not affect K + flux changes, whereas DMSO, Cd 2+ and vanadate increased verapamil-induced K + influx. Verapamil-induced K + flux increased with increased external KCl concentration or pH. Verapamil concentration up to 1 mM failed to shift Ca 2+ flux to efflux. Pre-treatment with adrenaline and dopamine agonists and antagonists led to changes in verapamil-induced ion flux, especially for Ca 2+ . We suggest that a transporter that allows entry of K + and Na + was the main system providing monovalent ion influx after verapamil application.","PeriodicalId":8650,"journal":{"name":"Australian Journal of Plant Physiology","volume":"26 1","pages":"1031-1040"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Verapamil-induced kinetics of ion flux in oat seedlings\",\"authors\":\"Olga Babourina, S. Shabala, I. Newman\",\"doi\":\"10.1071/PP99182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Verapamil application in ion transport studies on plant cells is widespread; however, the mechanism of its action is still poorly understood. Net flux of Ca 2+ , K + , Na + , H + and Cl – were measured in solution around oat seedlings using the non-invasive ion-selective microelectrode MIFE technique. The verapamil effect on intact plant tissues was a distinct immediate influx of monovalent cations, H + , K + or Na + . Pre-treatment with tetraethyl-ammonium, Cs + , Ba 2+ or Ca 2+ did not affect K + flux changes, whereas DMSO, Cd 2+ and vanadate increased verapamil-induced K + influx. Verapamil-induced K + flux increased with increased external KCl concentration or pH. Verapamil concentration up to 1 mM failed to shift Ca 2+ flux to efflux. Pre-treatment with adrenaline and dopamine agonists and antagonists led to changes in verapamil-induced ion flux, especially for Ca 2+ . We suggest that a transporter that allows entry of K + and Na + was the main system providing monovalent ion influx after verapamil application.\",\"PeriodicalId\":8650,\"journal\":{\"name\":\"Australian Journal of Plant Physiology\",\"volume\":\"26 1\",\"pages\":\"1031-1040\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Plant Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/PP99182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Plant Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/PP99182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Verapamil-induced kinetics of ion flux in oat seedlings
Verapamil application in ion transport studies on plant cells is widespread; however, the mechanism of its action is still poorly understood. Net flux of Ca 2+ , K + , Na + , H + and Cl – were measured in solution around oat seedlings using the non-invasive ion-selective microelectrode MIFE technique. The verapamil effect on intact plant tissues was a distinct immediate influx of monovalent cations, H + , K + or Na + . Pre-treatment with tetraethyl-ammonium, Cs + , Ba 2+ or Ca 2+ did not affect K + flux changes, whereas DMSO, Cd 2+ and vanadate increased verapamil-induced K + influx. Verapamil-induced K + flux increased with increased external KCl concentration or pH. Verapamil concentration up to 1 mM failed to shift Ca 2+ flux to efflux. Pre-treatment with adrenaline and dopamine agonists and antagonists led to changes in verapamil-induced ion flux, especially for Ca 2+ . We suggest that a transporter that allows entry of K + and Na + was the main system providing monovalent ion influx after verapamil application.