使用基本级别类别的对象分类

Mariusz Mulka, Wojciech A. Lorkiewicz, R. Katarzyniak
{"title":"使用基本级别类别的对象分类","authors":"Mariusz Mulka, Wojciech A. Lorkiewicz, R. Katarzyniak","doi":"10.1109/CISP-BMEI.2017.8302327","DOIUrl":null,"url":null,"abstract":"This paper introduces a computational solution allowing an artificial system to organise large datasets into a set of known basic-level categories. Following cognitive computing paradigm we present an approach towards category-based internal organisation of cognitive agent's semantic memory. In particular, assuming a given set of basic-level categories (predefined or developed) we provide a concise introduction to two perceptron-based computational models allowing an artificial system to classify objects into basic-level categories. Utilising results from other disciplines (psychology, linguistics and cognitive science) we take advantage of the notion of cue validity and incorporate it as underlying weights of input features. Finally, using real bird species dataset we highlight simulation results of classification's precision and recall measures.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"41 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object classification using basic-level categories\",\"authors\":\"Mariusz Mulka, Wojciech A. Lorkiewicz, R. Katarzyniak\",\"doi\":\"10.1109/CISP-BMEI.2017.8302327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a computational solution allowing an artificial system to organise large datasets into a set of known basic-level categories. Following cognitive computing paradigm we present an approach towards category-based internal organisation of cognitive agent's semantic memory. In particular, assuming a given set of basic-level categories (predefined or developed) we provide a concise introduction to two perceptron-based computational models allowing an artificial system to classify objects into basic-level categories. Utilising results from other disciplines (psychology, linguistics and cognitive science) we take advantage of the notion of cue validity and incorporate it as underlying weights of input features. Finally, using real bird species dataset we highlight simulation results of classification's precision and recall measures.\",\"PeriodicalId\":6474,\"journal\":{\"name\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"41 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2017.8302327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8302327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种计算解决方案,允许人工系统将大型数据集组织成一组已知的基本级别类别。遵循认知计算范式,我们提出了一种基于类别的认知主体语义记忆内部组织方法。特别是,假设给定一组基本级别类别(预定义或开发),我们提供了两个基于感知器的计算模型的简要介绍,允许人工系统将对象分类为基本级别类别。利用其他学科(心理学、语言学和认知科学)的结果,我们利用线索有效性的概念,并将其作为输入特征的潜在权重。最后,利用真实的鸟类物种数据,对分类精度和召回率进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object classification using basic-level categories
This paper introduces a computational solution allowing an artificial system to organise large datasets into a set of known basic-level categories. Following cognitive computing paradigm we present an approach towards category-based internal organisation of cognitive agent's semantic memory. In particular, assuming a given set of basic-level categories (predefined or developed) we provide a concise introduction to two perceptron-based computational models allowing an artificial system to classify objects into basic-level categories. Utilising results from other disciplines (psychology, linguistics and cognitive science) we take advantage of the notion of cue validity and incorporate it as underlying weights of input features. Finally, using real bird species dataset we highlight simulation results of classification's precision and recall measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polarization Characterization and Evaluation of Healing Process of the Damaged-skin Applied with Chitosan and Silicone Hydrogel Applicator Design and Implementation of OpenDayLight Manager Application Extraction of cutting plans in craniosynostosis using convolutional neural networks Evaluation of Flight Test Data Quality Based on Rough Set Theory Radar Emitter Type Identification Effect Based On Different Structural Deep Feedforward Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1