{"title":"骨组织胶原/矿物纳米复合材料的x射线衍射力学分析","authors":"M. Todoh","doi":"10.11239/JSMBE.55ANNUAL.605","DOIUrl":null,"url":null,"abstract":"Bone is often regarded as a composite material consisting of mineral particles and organic matrix (mostly Type I collagen) on a microscopic scale. The mechanical properties of bone tissues at a macroscopic scale depend on the structural organization and properties of constituents in the microscopic scale. It is the interaction between the mineral and organic material that determines the mechanical properties. However, both mechanical behaviors of mineral and collagen phases are not clear yet. In this study, to clear both mechanical behaviors of collagen matrix and apatite crystals in bone, the cortical bone samples were collect from bovine femoral diaphysis. The microscopic mechanical behaviors of both mineral particles of apatite and collagen matrix in bone tissues were observed by wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS), respectively. In combination with micro-tensile device, both strains of mineral and collagen phases were measured.","PeriodicalId":39233,"journal":{"name":"Transactions of Japanese Society for Medical and Biological Engineering","volume":"34 1","pages":"605-606"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Analysis of Collagen/Mineral Nano-Composite of Bone Tissue by X-ray Diffraction\",\"authors\":\"M. Todoh\",\"doi\":\"10.11239/JSMBE.55ANNUAL.605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bone is often regarded as a composite material consisting of mineral particles and organic matrix (mostly Type I collagen) on a microscopic scale. The mechanical properties of bone tissues at a macroscopic scale depend on the structural organization and properties of constituents in the microscopic scale. It is the interaction between the mineral and organic material that determines the mechanical properties. However, both mechanical behaviors of mineral and collagen phases are not clear yet. In this study, to clear both mechanical behaviors of collagen matrix and apatite crystals in bone, the cortical bone samples were collect from bovine femoral diaphysis. The microscopic mechanical behaviors of both mineral particles of apatite and collagen matrix in bone tissues were observed by wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS), respectively. In combination with micro-tensile device, both strains of mineral and collagen phases were measured.\",\"PeriodicalId\":39233,\"journal\":{\"name\":\"Transactions of Japanese Society for Medical and Biological Engineering\",\"volume\":\"34 1\",\"pages\":\"605-606\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of Japanese Society for Medical and Biological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11239/JSMBE.55ANNUAL.605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Japanese Society for Medical and Biological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11239/JSMBE.55ANNUAL.605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Mechanical Analysis of Collagen/Mineral Nano-Composite of Bone Tissue by X-ray Diffraction
Bone is often regarded as a composite material consisting of mineral particles and organic matrix (mostly Type I collagen) on a microscopic scale. The mechanical properties of bone tissues at a macroscopic scale depend on the structural organization and properties of constituents in the microscopic scale. It is the interaction between the mineral and organic material that determines the mechanical properties. However, both mechanical behaviors of mineral and collagen phases are not clear yet. In this study, to clear both mechanical behaviors of collagen matrix and apatite crystals in bone, the cortical bone samples were collect from bovine femoral diaphysis. The microscopic mechanical behaviors of both mineral particles of apatite and collagen matrix in bone tissues were observed by wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS), respectively. In combination with micro-tensile device, both strains of mineral and collagen phases were measured.