COVID-19肺部病理

A. Cheepsattayakorn, R. Cheepsattayakorn
{"title":"COVID-19肺部病理","authors":"A. Cheepsattayakorn, R. Cheepsattayakorn","doi":"10.15406/jlprr.2020.07.00234","DOIUrl":null,"url":null,"abstract":"Currently, animal-to-human transmission of SARS-CoV-2 (COVID-19) has not yet been confirmed, whereas the main mode of transmission is human-to-human. Droplets are the main route of human-to-human transmission, whereas aerosols could be another route in addition to stool-based transmission. Currently, no evidence is available to indicate intrauterine vertical transmission of SARS-CoV-2 (COVID-19) in pregnant women. In the host, the life cycle of coronavirus consists of 5 steps: 1) attachment, 2) penetration, 3) biosynthesis, 4) maturation, and 5) release. Once viruses bind to host receptors (attachment), they enter host cells, particularly type II pneumocytes via endocytosis or membrane fusion (penetration). Once viral contents are released inside the host cells, viral RNA enters the host’s nucleus for replication and making viral proteins (biosynthesis). New viral particles are produced (maturation) and released. Spike protein of coronaviruses which determines the diversity of coronaviruses and host tropism is composed of a transmembrane trimetric glycoprotein protruding from the viral surface. Structural and functional studies demonstrated that the spike protein the of coronaviruses can bind to angiotensin converting enzyme 2 (ACE2), a functional receptor for SARS-CoV. ACE2 expression is high in lung (high expression on lung epithelial cells), heart, ileum, and kidney. The lungs of severe COVID-19 patients demonstrate infiltration of a large number of inflammatory cells. Due to high ACE2 expression on the apical side of lung epithelial cells in the alveolar space, SARS-CoV-2 (COVID-19) can enter and destroy lung epithelial cells. Significant ACE2 expression on innate lymphoid cells (ILC)2, ILC3, and endothelial cells is also demonstrated. Pulmonary endothelial cells represent one third of the lung cells. Endothelial function includes promotion of anti-aggregation, fibrinolysis, and vasodilatation. Due to a significant role playing in thrombotic regulation, hypercoagulable profiles that are demonstrated in severe COVID-19 patients likely suggest significant endothelial injury. Pulmonary thrombosis and embolism accompanying elevation of d-dimer and fibrinogen levels have been demonstrated in severe COVID-19. In conclusion, whether these histopathological lesions are direct consequences of sepsis, SARS-CoV-2 (C)OVID-19), and /or multiple organ failure is difficult to conclude. Further studies on understanding the roles of ILC1, ILC2, ILC3, including the difference in response to SARS-CoV-2 (COVID-19) infection between children and adults are urgently needed to develop efficient targeted therapies.","PeriodicalId":91750,"journal":{"name":"Journal of lung, pulmonary & respiratory research","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulmonary pathology of COVID-19\",\"authors\":\"A. Cheepsattayakorn, R. Cheepsattayakorn\",\"doi\":\"10.15406/jlprr.2020.07.00234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, animal-to-human transmission of SARS-CoV-2 (COVID-19) has not yet been confirmed, whereas the main mode of transmission is human-to-human. Droplets are the main route of human-to-human transmission, whereas aerosols could be another route in addition to stool-based transmission. Currently, no evidence is available to indicate intrauterine vertical transmission of SARS-CoV-2 (COVID-19) in pregnant women. In the host, the life cycle of coronavirus consists of 5 steps: 1) attachment, 2) penetration, 3) biosynthesis, 4) maturation, and 5) release. Once viruses bind to host receptors (attachment), they enter host cells, particularly type II pneumocytes via endocytosis or membrane fusion (penetration). Once viral contents are released inside the host cells, viral RNA enters the host’s nucleus for replication and making viral proteins (biosynthesis). New viral particles are produced (maturation) and released. Spike protein of coronaviruses which determines the diversity of coronaviruses and host tropism is composed of a transmembrane trimetric glycoprotein protruding from the viral surface. Structural and functional studies demonstrated that the spike protein the of coronaviruses can bind to angiotensin converting enzyme 2 (ACE2), a functional receptor for SARS-CoV. ACE2 expression is high in lung (high expression on lung epithelial cells), heart, ileum, and kidney. The lungs of severe COVID-19 patients demonstrate infiltration of a large number of inflammatory cells. Due to high ACE2 expression on the apical side of lung epithelial cells in the alveolar space, SARS-CoV-2 (COVID-19) can enter and destroy lung epithelial cells. Significant ACE2 expression on innate lymphoid cells (ILC)2, ILC3, and endothelial cells is also demonstrated. Pulmonary endothelial cells represent one third of the lung cells. Endothelial function includes promotion of anti-aggregation, fibrinolysis, and vasodilatation. Due to a significant role playing in thrombotic regulation, hypercoagulable profiles that are demonstrated in severe COVID-19 patients likely suggest significant endothelial injury. Pulmonary thrombosis and embolism accompanying elevation of d-dimer and fibrinogen levels have been demonstrated in severe COVID-19. In conclusion, whether these histopathological lesions are direct consequences of sepsis, SARS-CoV-2 (C)OVID-19), and /or multiple organ failure is difficult to conclude. Further studies on understanding the roles of ILC1, ILC2, ILC3, including the difference in response to SARS-CoV-2 (COVID-19) infection between children and adults are urgently needed to develop efficient targeted therapies.\",\"PeriodicalId\":91750,\"journal\":{\"name\":\"Journal of lung, pulmonary & respiratory research\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of lung, pulmonary & respiratory research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/jlprr.2020.07.00234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lung, pulmonary & respiratory research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/jlprr.2020.07.00234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,SARS-CoV-2 (COVID-19)的动物-人传播尚未得到证实,主要传播方式是人与人之间的传播。飞沫是人际传播的主要途径,而气溶胶可能是除粪便传播外的另一途径。目前,没有证据表明SARS-CoV-2 (COVID-19)在孕妇宫内垂直传播。在宿主体内,冠状病毒的生命周期包括5个步骤:1)附着,2)渗透,3)生物合成,4)成熟,5)释放。一旦病毒与宿主受体结合(附着),它们通过内吞作用或膜融合(渗透)进入宿主细胞,特别是II型肺细胞。一旦病毒内容物被释放到宿主细胞内,病毒RNA就进入宿主细胞核进行复制并制造病毒蛋白(生物合成)。新的病毒颗粒产生(成熟)并释放。冠状病毒的刺突蛋白是由一种从病毒表面突出的跨膜三量糖蛋白组成的,它决定了冠状病毒的多样性和向宿主性。结构和功能研究表明,冠状病毒的刺突蛋白可以与血管紧张素转换酶2 (ACE2)结合,ACE2是sars冠状病毒的功能受体。ACE2在肺(肺上皮细胞)、心脏、回肠和肾脏中高表达。重症COVID-19患者肺部可见大量炎症细胞浸润。由于肺泡间隙肺上皮细胞顶侧ACE2高表达,SARS-CoV-2 (COVID-19)可进入并破坏肺上皮细胞。ACE2在先天淋巴样细胞(ILC)2、ILC3和内皮细胞中也有显著表达。肺内皮细胞占肺细胞的三分之一。内皮功能包括促进抗聚集、纤溶和血管舒张。由于在血栓形成调节中发挥重要作用,在严重的COVID-19患者中显示的高凝特征可能表明存在严重的内皮损伤。在严重的COVID-19中,已证实肺血栓形成和栓塞伴d-二聚体和纤维蛋白原水平升高。总之,这些组织病理学病变是否是败血症、SARS-CoV-2 (C)OVID-19和/或多器官功能衰竭的直接后果很难得出结论。迫切需要进一步研究ILC1, ILC2, ILC3的作用,包括儿童和成人对COVID-19感染的反应差异,以开发有效的靶向治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pulmonary pathology of COVID-19
Currently, animal-to-human transmission of SARS-CoV-2 (COVID-19) has not yet been confirmed, whereas the main mode of transmission is human-to-human. Droplets are the main route of human-to-human transmission, whereas aerosols could be another route in addition to stool-based transmission. Currently, no evidence is available to indicate intrauterine vertical transmission of SARS-CoV-2 (COVID-19) in pregnant women. In the host, the life cycle of coronavirus consists of 5 steps: 1) attachment, 2) penetration, 3) biosynthesis, 4) maturation, and 5) release. Once viruses bind to host receptors (attachment), they enter host cells, particularly type II pneumocytes via endocytosis or membrane fusion (penetration). Once viral contents are released inside the host cells, viral RNA enters the host’s nucleus for replication and making viral proteins (biosynthesis). New viral particles are produced (maturation) and released. Spike protein of coronaviruses which determines the diversity of coronaviruses and host tropism is composed of a transmembrane trimetric glycoprotein protruding from the viral surface. Structural and functional studies demonstrated that the spike protein the of coronaviruses can bind to angiotensin converting enzyme 2 (ACE2), a functional receptor for SARS-CoV. ACE2 expression is high in lung (high expression on lung epithelial cells), heart, ileum, and kidney. The lungs of severe COVID-19 patients demonstrate infiltration of a large number of inflammatory cells. Due to high ACE2 expression on the apical side of lung epithelial cells in the alveolar space, SARS-CoV-2 (COVID-19) can enter and destroy lung epithelial cells. Significant ACE2 expression on innate lymphoid cells (ILC)2, ILC3, and endothelial cells is also demonstrated. Pulmonary endothelial cells represent one third of the lung cells. Endothelial function includes promotion of anti-aggregation, fibrinolysis, and vasodilatation. Due to a significant role playing in thrombotic regulation, hypercoagulable profiles that are demonstrated in severe COVID-19 patients likely suggest significant endothelial injury. Pulmonary thrombosis and embolism accompanying elevation of d-dimer and fibrinogen levels have been demonstrated in severe COVID-19. In conclusion, whether these histopathological lesions are direct consequences of sepsis, SARS-CoV-2 (C)OVID-19), and /or multiple organ failure is difficult to conclude. Further studies on understanding the roles of ILC1, ILC2, ILC3, including the difference in response to SARS-CoV-2 (COVID-19) infection between children and adults are urgently needed to develop efficient targeted therapies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Case of hydropneumothorax Medication resistant tuberculosis: multi drugresistant and extensively drug resistant First aid for acute lung inflammation Continuation of therapeutic anticoagulation before and during hospitalization is associated with reduced mortality in COVID-19 ICU patients Subtyping meconium protease activities which degrade lung protective angiotensin converting enzyme-2 in human lung cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1