{"title":"体验报告:seL4:正式验证高性能微内核","authors":"G. Klein, Philip Derrin, Kevin Elphinstone","doi":"10.1145/1596550.1596566","DOIUrl":null,"url":null,"abstract":"We report on our experience using Haskell as an executable specification language in the formal verification of the seL4 microkernel. The verification connects an abstract operational specification in the theorem prover Isabelle/HOL to a C implementation of the microkernel. We describe how this project differs from other efforts, and examine the effect of using Haskell in a large-scale formal verification. The kernel comprises 8,700 lines of C code; the verification more than 150,000 lines of proof script.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"14 1","pages":"91-96"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Experience report: seL4: formally verifying a high-performance microkernel\",\"authors\":\"G. Klein, Philip Derrin, Kevin Elphinstone\",\"doi\":\"10.1145/1596550.1596566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on our experience using Haskell as an executable specification language in the formal verification of the seL4 microkernel. The verification connects an abstract operational specification in the theorem prover Isabelle/HOL to a C implementation of the microkernel. We describe how this project differs from other efforts, and examine the effect of using Haskell in a large-scale formal verification. The kernel comprises 8,700 lines of C code; the verification more than 150,000 lines of proof script.\",\"PeriodicalId\":20504,\"journal\":{\"name\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"volume\":\"14 1\",\"pages\":\"91-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1596550.1596566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1596550.1596566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experience report: seL4: formally verifying a high-performance microkernel
We report on our experience using Haskell as an executable specification language in the formal verification of the seL4 microkernel. The verification connects an abstract operational specification in the theorem prover Isabelle/HOL to a C implementation of the microkernel. We describe how this project differs from other efforts, and examine the effect of using Haskell in a large-scale formal verification. The kernel comprises 8,700 lines of C code; the verification more than 150,000 lines of proof script.