基于外部记忆神经网络模型的多跳推理与知识计算问答研究

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Advanced Computational Intelligence and Intelligent Informatics Pub Date : 2023-05-20 DOI:10.20965/jaciii.2023.p0481
Yuri Murayama, Ichiro Kobayashi
{"title":"基于外部记忆神经网络模型的多跳推理与知识计算问答研究","authors":"Yuri Murayama, Ichiro Kobayashi","doi":"10.20965/jaciii.2023.p0481","DOIUrl":null,"url":null,"abstract":"The differentiable neural computer (DNC) is a neural network model with an addressable external memory that can solve algorithmic and question-answering tasks. Improved versions of the DNC have been proposed, including the robust and scalable DNC (rsDNC) and DNC-deallocation-masking-sharpness (DNC-DMS). However, integrating structured knowledge and calculations into these DNC models remains a challenging research question. In this study, we incorporate an architecture for knowledge and calculations into the DNC, rsDNC, and DNC-DMS to improve their abilities to generate correct answers for questions with multi-hop reasoning and provide calculations over structured knowledge. Our improved rsDNC model achieves the best performance for the mean top-1 accuracy, and our improved DNC-DMS model scores the highest for the top-10 accuracy in the GEO dataset. In addition, our improved rsDNC model outperforms other models in regards to the mean top-1 accuracy and mean top-10 accuracy in the augmented GEO dataset.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"15 1","pages":"481-489"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Question-Answering with Multi-Hop Reasoning and Calculation over Knowledge Using a Neural Network Model with External Memories\",\"authors\":\"Yuri Murayama, Ichiro Kobayashi\",\"doi\":\"10.20965/jaciii.2023.p0481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The differentiable neural computer (DNC) is a neural network model with an addressable external memory that can solve algorithmic and question-answering tasks. Improved versions of the DNC have been proposed, including the robust and scalable DNC (rsDNC) and DNC-deallocation-masking-sharpness (DNC-DMS). However, integrating structured knowledge and calculations into these DNC models remains a challenging research question. In this study, we incorporate an architecture for knowledge and calculations into the DNC, rsDNC, and DNC-DMS to improve their abilities to generate correct answers for questions with multi-hop reasoning and provide calculations over structured knowledge. Our improved rsDNC model achieves the best performance for the mean top-1 accuracy, and our improved DNC-DMS model scores the highest for the top-10 accuracy in the GEO dataset. In addition, our improved rsDNC model outperforms other models in regards to the mean top-1 accuracy and mean top-10 accuracy in the augmented GEO dataset.\",\"PeriodicalId\":45921,\"journal\":{\"name\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"volume\":\"15 1\",\"pages\":\"481-489\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jaciii.2023.p0481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

可微神经计算机(DNC)是一种具有可寻址外部存储器的神经网络模型,可以解决算法和问答任务。DNC的改进版本已经被提出,包括鲁棒和可扩展的DNC (rsDNC)和DNC-释放-掩码-清晰度(DNC- dms)。然而,将结构化知识和计算集成到这些DNC模型中仍然是一个具有挑战性的研究问题。在本研究中,我们将知识和计算架构整合到DNC、rsDNC和DNC- dms中,以提高它们对具有多跳推理的问题生成正确答案的能力,并提供对结构化知识的计算。改进的rsDNC模型在GEO数据集中的前1位精度上取得了最好的成绩,改进的DNC-DMS模型在前10位精度上取得了最高的成绩。此外,我们改进的rsDNC模型在增强GEO数据集的平均前1精度和平均前10精度方面优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward Question-Answering with Multi-Hop Reasoning and Calculation over Knowledge Using a Neural Network Model with External Memories
The differentiable neural computer (DNC) is a neural network model with an addressable external memory that can solve algorithmic and question-answering tasks. Improved versions of the DNC have been proposed, including the robust and scalable DNC (rsDNC) and DNC-deallocation-masking-sharpness (DNC-DMS). However, integrating structured knowledge and calculations into these DNC models remains a challenging research question. In this study, we incorporate an architecture for knowledge and calculations into the DNC, rsDNC, and DNC-DMS to improve their abilities to generate correct answers for questions with multi-hop reasoning and provide calculations over structured knowledge. Our improved rsDNC model achieves the best performance for the mean top-1 accuracy, and our improved DNC-DMS model scores the highest for the top-10 accuracy in the GEO dataset. In addition, our improved rsDNC model outperforms other models in regards to the mean top-1 accuracy and mean top-10 accuracy in the augmented GEO dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
期刊最新文献
The Impact of Individual Heterogeneity on Household Asset Choice: An Empirical Study Based on China Family Panel Studies Private Placement, Investor Sentiment, and Stock Price Anomaly Does Increasing Public Service Expenditure Slow the Long-Term Economic Growth Rate?—Evidence from China Prediction and Characteristic Analysis of Enterprise Digital Transformation Integrating XGBoost and SHAP Industrial Chain Map and Linkage Network Characteristics of Digital Economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1