{"title":"CF/PEEK胶带预成形件与CF/PEEK有机片材在冲压成形过程中的共固结","authors":"J. Weber, J. Schlimbach","doi":"10.1080/20550340.2019.1673961","DOIUrl":null,"url":null,"abstract":"Abstract Co-consolidation is considered one effective joining method to allow novel types of integral structures to be manufactured. In this study, carbon fiber reinforced Polyether-Ether-Ketone partially consolidated tape preforms were co-consolidated with carbon fiber reinforced Polyether-Ether-Ketone organo sheets in stamp-forming process. Interlaminar bond quality of both joining partners is validated in double cantilever beam test. Results exhibit average interlaminar fracture toughness of 2.54 kJ/m2 for stamp-forming specimen, which exceeds interlaminar fracture toughness of reference samples manufactured in autoclave being 1.79 kJ/m2. Further examinations on specimen morphology and mechanical properties indicate distinct assignments to process characteristic cooling rates, which coincides with studies from literature. Accordingly, high cooling rates—as evident in stamp-forming process—are allocated to high toughness, low crystallinity and low bending modulus, causing high interlaminar fracture toughness. Investigations on laminate quality reveal maximum void content of 1.58%. Graphical Abstract","PeriodicalId":7243,"journal":{"name":"Advanced Manufacturing: Polymer & Composites Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Co-consolidation of CF/PEEK tape-preforms and CF/PEEK organo sheets to manufacture reinforcements in stamp-forming process\",\"authors\":\"J. Weber, J. Schlimbach\",\"doi\":\"10.1080/20550340.2019.1673961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Co-consolidation is considered one effective joining method to allow novel types of integral structures to be manufactured. In this study, carbon fiber reinforced Polyether-Ether-Ketone partially consolidated tape preforms were co-consolidated with carbon fiber reinforced Polyether-Ether-Ketone organo sheets in stamp-forming process. Interlaminar bond quality of both joining partners is validated in double cantilever beam test. Results exhibit average interlaminar fracture toughness of 2.54 kJ/m2 for stamp-forming specimen, which exceeds interlaminar fracture toughness of reference samples manufactured in autoclave being 1.79 kJ/m2. Further examinations on specimen morphology and mechanical properties indicate distinct assignments to process characteristic cooling rates, which coincides with studies from literature. Accordingly, high cooling rates—as evident in stamp-forming process—are allocated to high toughness, low crystallinity and low bending modulus, causing high interlaminar fracture toughness. Investigations on laminate quality reveal maximum void content of 1.58%. Graphical Abstract\",\"PeriodicalId\":7243,\"journal\":{\"name\":\"Advanced Manufacturing: Polymer & Composites Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Manufacturing: Polymer & Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20550340.2019.1673961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Manufacturing: Polymer & Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20550340.2019.1673961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Co-consolidation of CF/PEEK tape-preforms and CF/PEEK organo sheets to manufacture reinforcements in stamp-forming process
Abstract Co-consolidation is considered one effective joining method to allow novel types of integral structures to be manufactured. In this study, carbon fiber reinforced Polyether-Ether-Ketone partially consolidated tape preforms were co-consolidated with carbon fiber reinforced Polyether-Ether-Ketone organo sheets in stamp-forming process. Interlaminar bond quality of both joining partners is validated in double cantilever beam test. Results exhibit average interlaminar fracture toughness of 2.54 kJ/m2 for stamp-forming specimen, which exceeds interlaminar fracture toughness of reference samples manufactured in autoclave being 1.79 kJ/m2. Further examinations on specimen morphology and mechanical properties indicate distinct assignments to process characteristic cooling rates, which coincides with studies from literature. Accordingly, high cooling rates—as evident in stamp-forming process—are allocated to high toughness, low crystallinity and low bending modulus, causing high interlaminar fracture toughness. Investigations on laminate quality reveal maximum void content of 1.58%. Graphical Abstract