对抗性学习:一种批判性的回顾和主动的学习研究

David J. Miller, Xinyi Hu, Zhicong Qiu, G. Kesidis
{"title":"对抗性学习:一种批判性的回顾和主动的学习研究","authors":"David J. Miller, Xinyi Hu, Zhicong Qiu, G. Kesidis","doi":"10.1109/MLSP.2017.8168163","DOIUrl":null,"url":null,"abstract":"This papers consists of two parts. The first is a critical review of prior art on adversarial learning, i) identifying some significant limitations of previous works, which have focused mainly on attack exploits and ii) proposing novel defenses against adversarial attacks. The second part is an experimental study considering the adversarial active learning scenario and an investigation of the efficacy of a mixed sample selection strategy for combating an adversary who attempts to disrupt the classifier learning.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"8 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Adversarial learning: A critical review and active learning study\",\"authors\":\"David J. Miller, Xinyi Hu, Zhicong Qiu, G. Kesidis\",\"doi\":\"10.1109/MLSP.2017.8168163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This papers consists of two parts. The first is a critical review of prior art on adversarial learning, i) identifying some significant limitations of previous works, which have focused mainly on attack exploits and ii) proposing novel defenses against adversarial attacks. The second part is an experimental study considering the adversarial active learning scenario and an investigation of the efficacy of a mixed sample selection strategy for combating an adversary who attempts to disrupt the classifier learning.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"8 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文由两部分组成。第一部分是对对抗性学习的现有技术的批判性回顾,i)确定先前工作的一些重要局限性,这些工作主要集中在攻击利用上,ii)提出针对对抗性攻击的新防御。第二部分是一项考虑对抗性主动学习场景的实验研究,并研究了混合样本选择策略对抗试图破坏分类器学习的对手的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adversarial learning: A critical review and active learning study
This papers consists of two parts. The first is a critical review of prior art on adversarial learning, i) identifying some significant limitations of previous works, which have focused mainly on attack exploits and ii) proposing novel defenses against adversarial attacks. The second part is an experimental study considering the adversarial active learning scenario and an investigation of the efficacy of a mixed sample selection strategy for combating an adversary who attempts to disrupt the classifier learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classical quadrature rules via Gaussian processes Does speech enhancement work with end-to-end ASR objectives?: Experimental analysis of multichannel end-to-end ASR Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification Partitioning in signal processing using the object migration automaton and the pursuit paradigm Inferring room semantics using acoustic monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1