光致静态磁化:非线性爱德斯坦效应

Haowei Xu, Jian Zhou, Hua Wang, Ju Li
{"title":"光致静态磁化:非线性爱德斯坦效应","authors":"Haowei Xu, Jian Zhou, Hua Wang, Ju Li","doi":"10.1103/PhysRevB.103.205417","DOIUrl":null,"url":null,"abstract":"We theoretically and computationally demonstrate that static magnetization can be generated under light illumination via nonlinear Edelstein effect (NLEE). NLEE is applicable to semiconductors under both linearly and circularly polarized light, and there are no constraints from either spatial inversion or time-reversal symmetry. Remarkably, magnetization can be induced under linearly polarized light in nonmagnetic materials. With ab initio calculations, we reveal several prominent features of NLEE. We find that the orbital contributions can be significantly greater than the spin contributions. And magnetization with various orderings, including anti-ferromagnetic, ferromagnetic, etc., are all realizable with NLEE, which may facilitate many applications, such as unveiling hidden physical effects, creating a spatially varying magnetization, or manipulating the magnetization of anti-ferromagnetic materials. The relationship between NLEE and other magneto-optic effects, including the inverse Faraday effect and inverse Cotton-Mouton effect, is also discussed.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Light-Induced Static Magnetization: Nonlinear Edelstein Effect\",\"authors\":\"Haowei Xu, Jian Zhou, Hua Wang, Ju Li\",\"doi\":\"10.1103/PhysRevB.103.205417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We theoretically and computationally demonstrate that static magnetization can be generated under light illumination via nonlinear Edelstein effect (NLEE). NLEE is applicable to semiconductors under both linearly and circularly polarized light, and there are no constraints from either spatial inversion or time-reversal symmetry. Remarkably, magnetization can be induced under linearly polarized light in nonmagnetic materials. With ab initio calculations, we reveal several prominent features of NLEE. We find that the orbital contributions can be significantly greater than the spin contributions. And magnetization with various orderings, including anti-ferromagnetic, ferromagnetic, etc., are all realizable with NLEE, which may facilitate many applications, such as unveiling hidden physical effects, creating a spatially varying magnetization, or manipulating the magnetization of anti-ferromagnetic materials. The relationship between NLEE and other magneto-optic effects, including the inverse Faraday effect and inverse Cotton-Mouton effect, is also discussed.\",\"PeriodicalId\":8467,\"journal\":{\"name\":\"arXiv: Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevB.103.205417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.103.205417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们从理论上和计算上证明了在光照下,通过非线性Edelstein效应(NLEE)可以产生静态磁化。NLEE适用于线偏振光和圆偏振光下的半导体,并且不受空间反转或时间反转对称性的限制。值得注意的是,在非磁性材料中,线偏振光可以诱导磁化。通过从头计算,我们揭示了NLEE的几个突出特征。我们发现轨道的贡献可以显著大于自旋的贡献。NLEE可以实现反铁磁、铁磁等各种有序的磁化,这有助于揭示隐藏的物理效应、创建空间变化的磁化强度或操纵反铁磁材料的磁化强度等许多应用。本文还讨论了NLEE与其他磁光效应的关系,包括反法拉第效应和反Cotton-Mouton效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Light-Induced Static Magnetization: Nonlinear Edelstein Effect
We theoretically and computationally demonstrate that static magnetization can be generated under light illumination via nonlinear Edelstein effect (NLEE). NLEE is applicable to semiconductors under both linearly and circularly polarized light, and there are no constraints from either spatial inversion or time-reversal symmetry. Remarkably, magnetization can be induced under linearly polarized light in nonmagnetic materials. With ab initio calculations, we reveal several prominent features of NLEE. We find that the orbital contributions can be significantly greater than the spin contributions. And magnetization with various orderings, including anti-ferromagnetic, ferromagnetic, etc., are all realizable with NLEE, which may facilitate many applications, such as unveiling hidden physical effects, creating a spatially varying magnetization, or manipulating the magnetization of anti-ferromagnetic materials. The relationship between NLEE and other magneto-optic effects, including the inverse Faraday effect and inverse Cotton-Mouton effect, is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A pathway towards high throughput Quantum Monte Carlo simulations for alloys: A case study of two-dimensional (2D) GaSₓSe₁₋ₓ Data analytics accelerates the experimental discovery of new thermoelectric materials with extremely high figure of merit Thermal laser evaporation of elements from across the periodic table Perpendicular magnetic anisotropy in ultra-thin Cu2Sb-type (Mn–Cr)AlGe films fabricated onto thermally oxidized silicon substrates The Mesoscale Crystallinity of Nacreous Pearls
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1