CAMNEP:用于高速网络的入侵检测系统

M. Rehák, M. Pechoucek, Karel Bartos, Martin Grill, Pavel Čeleda, Vojtech Krmicek
{"title":"CAMNEP:用于高速网络的入侵检测系统","authors":"M. Rehák, M. Pechoucek, Karel Bartos, Martin Grill, Pavel Čeleda, Vojtech Krmicek","doi":"10.2201/NIIPI.2008.5.7","DOIUrl":null,"url":null,"abstract":"The presented research aims to detect malicious traffic in high\nspeed networks by means of correlated anomaly detection\nmethods. In order to acquire the real-time traffic statistics\nin NetFlow format, we deploy transparent inline probes based on\nFPGA elements. They provide traffic statistics to the\nagent-based detection layer, where each agent uses a specific\nanomaly detection method to detect anomalies and describe the\nflows in its extended trust model. The agents share the anomaly\nassessments of individual network flows that are used as an\ninput for the agents trust models. The trustfulness values of\nindividual flows from all agents are combined to estimate their\nmaliciousness. The estimate of trust is subsequently used to\nfilter out the most significant events that are reported to\nnetwork operators for further analysis. We argue that the use\nof trust model for integration of several anomaly detection\nmethods and efficient representation of history data shall\nreduce the high rate of false positives (legitimate traffic\nclassified as malicious) which limits the effectiveness of\ncurrent intrusion detection systems.","PeriodicalId":91638,"journal":{"name":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","volume":"10 1","pages":"65"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"CAMNEP: An intrusion detection system for high-speed networks\",\"authors\":\"M. Rehák, M. Pechoucek, Karel Bartos, Martin Grill, Pavel Čeleda, Vojtech Krmicek\",\"doi\":\"10.2201/NIIPI.2008.5.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presented research aims to detect malicious traffic in high\\nspeed networks by means of correlated anomaly detection\\nmethods. In order to acquire the real-time traffic statistics\\nin NetFlow format, we deploy transparent inline probes based on\\nFPGA elements. They provide traffic statistics to the\\nagent-based detection layer, where each agent uses a specific\\nanomaly detection method to detect anomalies and describe the\\nflows in its extended trust model. The agents share the anomaly\\nassessments of individual network flows that are used as an\\ninput for the agents trust models. The trustfulness values of\\nindividual flows from all agents are combined to estimate their\\nmaliciousness. The estimate of trust is subsequently used to\\nfilter out the most significant events that are reported to\\nnetwork operators for further analysis. We argue that the use\\nof trust model for integration of several anomaly detection\\nmethods and efficient representation of history data shall\\nreduce the high rate of false positives (legitimate traffic\\nclassified as malicious) which limits the effectiveness of\\ncurrent intrusion detection systems.\",\"PeriodicalId\":91638,\"journal\":{\"name\":\"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing\",\"volume\":\"10 1\",\"pages\":\"65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2201/NIIPI.2008.5.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2201/NIIPI.2008.5.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本研究旨在利用相关异常检测方法检测高速网络中的恶意流量。为了获取NetFlow格式的实时流量统计数据,我们部署了基于fpga元件的透明内联探针。它们为基于代理的检测层提供流量统计数据,其中每个代理使用特定的异常检测方法来检测异常并在其扩展的信任模型中描述流量。代理共享单个网络流的异常评估,这些评估用作代理信任模型的输入。将来自所有代理的单个流的信任值组合起来以估计其恶意程度。信任的估计随后被用来过滤掉报告给网络运营商的最重要的事件,以供进一步分析。我们认为,使用信任模型集成多种异常检测方法和有效的历史数据表示将降低高误报率(合法流量被归类为恶意流量),这限制了当前入侵检测系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CAMNEP: An intrusion detection system for high-speed networks
The presented research aims to detect malicious traffic in high speed networks by means of correlated anomaly detection methods. In order to acquire the real-time traffic statistics in NetFlow format, we deploy transparent inline probes based on FPGA elements. They provide traffic statistics to the agent-based detection layer, where each agent uses a specific anomaly detection method to detect anomalies and describe the flows in its extended trust model. The agents share the anomaly assessments of individual network flows that are used as an input for the agents trust models. The trustfulness values of individual flows from all agents are combined to estimate their maliciousness. The estimate of trust is subsequently used to filter out the most significant events that are reported to network operators for further analysis. We argue that the use of trust model for integration of several anomaly detection methods and efficient representation of history data shall reduce the high rate of false positives (legitimate traffic classified as malicious) which limits the effectiveness of current intrusion detection systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A convolutional neural network based approach towards real-time hard hat detection Report on the analyses and the applications of a large-scale news video archive: NII TV-RECS Large-scale cross-media analysis and mining from socially curated contents Scalable Approaches for Content -based Video Retrieval 湘南会議 The future of multimedia analysis and mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1