检测包含依赖于非常多的表

Fabian Tschirschnitz, Thorsten Papenbrock, Felix Naumann
{"title":"检测包含依赖于非常多的表","authors":"Fabian Tschirschnitz, Thorsten Papenbrock, Felix Naumann","doi":"10.1145/3105959","DOIUrl":null,"url":null,"abstract":"Detecting inclusion dependencies, the prerequisite of foreign keys, in relational data is a challenging task. Detecting them among the hundreds of thousands or even millions of tables on the web is daunting. Still, such inclusion dependencies can help connect disparate pieces of information on the Web and reveal unknown relationships among tables. With the algorithm Many, we present a novel inclusion dependency detection algorithm, specialized for the very many—but typically small—tables found on the Web. We make use of Bloom filters and indexed bit-vectors to show the feasibility of our approach. Our evaluation on two corpora of Web tables shows a superior runtime over known approaches and its usefulness to reveal hidden structures on the Web.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"93 1","pages":"1 - 29"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Detecting Inclusion Dependencies on Very Many Tables\",\"authors\":\"Fabian Tschirschnitz, Thorsten Papenbrock, Felix Naumann\",\"doi\":\"10.1145/3105959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting inclusion dependencies, the prerequisite of foreign keys, in relational data is a challenging task. Detecting them among the hundreds of thousands or even millions of tables on the web is daunting. Still, such inclusion dependencies can help connect disparate pieces of information on the Web and reveal unknown relationships among tables. With the algorithm Many, we present a novel inclusion dependency detection algorithm, specialized for the very many—but typically small—tables found on the Web. We make use of Bloom filters and indexed bit-vectors to show the feasibility of our approach. Our evaluation on two corpora of Web tables shows a superior runtime over known approaches and its usefulness to reveal hidden structures on the Web.\",\"PeriodicalId\":6983,\"journal\":{\"name\":\"ACM Transactions on Database Systems (TODS)\",\"volume\":\"93 1\",\"pages\":\"1 - 29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Database Systems (TODS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3105959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3105959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在关系数据中检测包含依赖关系(外键的先决条件)是一项具有挑战性的任务。在网络上数十万甚至数百万的表中检测它们是令人生畏的。尽管如此,这种包含依赖关系可以帮助连接Web上不同的信息片段,并揭示表之间未知的关系。通过算法Many,我们提出了一种新的包含依赖检测算法,专门用于Web上非常多(但通常很小)的表。我们使用布隆过滤器和索引位向量来显示我们方法的可行性。我们对两个Web表语料库的评估表明,它比已知的方法运行时更好,而且它在揭示Web上隐藏结构方面很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Inclusion Dependencies on Very Many Tables
Detecting inclusion dependencies, the prerequisite of foreign keys, in relational data is a challenging task. Detecting them among the hundreds of thousands or even millions of tables on the web is daunting. Still, such inclusion dependencies can help connect disparate pieces of information on the Web and reveal unknown relationships among tables. With the algorithm Many, we present a novel inclusion dependency detection algorithm, specialized for the very many—but typically small—tables found on the Web. We make use of Bloom filters and indexed bit-vectors to show the feasibility of our approach. Our evaluation on two corpora of Web tables shows a superior runtime over known approaches and its usefulness to reveal hidden structures on the Web.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Finding Rank Regret Representatives Answering (Unions of) Conjunctive Queries using Random Access and Random-Order Enumeration Persistent Summaries Influence Maximization Revisited: Efficient Sampling with Bound Tightened The Space-Efficient Core of Vadalog
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1