在高达900°C的退火温度下,Ni/氢气端接金刚石可靠的欧姆接触特性

Xiaolu Yuan, Jiangwei Liu, Jinlong Liu, Junjun Wei, B. Da, Chengming Li, Y. Koide
{"title":"在高达900°C的退火温度下,Ni/氢气端接金刚石可靠的欧姆接触特性","authors":"Xiaolu Yuan, Jiangwei Liu, Jinlong Liu, Junjun Wei, B. Da, Chengming Li, Y. Koide","doi":"10.3390/COATINGS11040470","DOIUrl":null,"url":null,"abstract":"Ohmic contact with high thermal stability is essential to promote hydrogen-terminated diamond (H-diamond) electronic devices for high-temperature applications. Here, the ohmic contact characteristics of Ni/H-diamond at annealing temperatures up to 900 °C are investigated. The measured current–voltage curves and deduced specific contact resistance (ρC) are used to evaluate the quality of the contact properties. Schottky contacts are formed for the as-received and 300 °C-annealed Ni/H-diamonds. When the annealing temperature is increased to 500 °C, the ohmic contact properties are formed with the ρC of 1.5 × 10−3 Ω·cm2 for the Ni/H-diamond. As the annealing temperature rises to 900 °C, the ρC is determined to be as low as 6.0 × 10−5 Ω·cm2. It is believed that the formation of Ni-related carbides at the Ni/H-diamond interface promotes the decrease in ρC. The Ni metal is extremely promising to be used as the ohmic contact electrode for the H-diamond-based electronic devices at temperature up to 900 °C.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"35 1","pages":"470"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable Ohmic Contact Properties for Ni/Hydrogen-Terminated Diamond at Annealing Temperature up to 900 °C\",\"authors\":\"Xiaolu Yuan, Jiangwei Liu, Jinlong Liu, Junjun Wei, B. Da, Chengming Li, Y. Koide\",\"doi\":\"10.3390/COATINGS11040470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ohmic contact with high thermal stability is essential to promote hydrogen-terminated diamond (H-diamond) electronic devices for high-temperature applications. Here, the ohmic contact characteristics of Ni/H-diamond at annealing temperatures up to 900 °C are investigated. The measured current–voltage curves and deduced specific contact resistance (ρC) are used to evaluate the quality of the contact properties. Schottky contacts are formed for the as-received and 300 °C-annealed Ni/H-diamonds. When the annealing temperature is increased to 500 °C, the ohmic contact properties are formed with the ρC of 1.5 × 10−3 Ω·cm2 for the Ni/H-diamond. As the annealing temperature rises to 900 °C, the ρC is determined to be as low as 6.0 × 10−5 Ω·cm2. It is believed that the formation of Ni-related carbides at the Ni/H-diamond interface promotes the decrease in ρC. The Ni metal is extremely promising to be used as the ohmic contact electrode for the H-diamond-based electronic devices at temperature up to 900 °C.\",\"PeriodicalId\":22482,\"journal\":{\"name\":\"THE Coatings\",\"volume\":\"35 1\",\"pages\":\"470\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE Coatings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/COATINGS11040470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11040470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有高热稳定性的欧姆接触对于促进高温应用的端氢金刚石(H-diamond)电子器件至关重要。本文研究了Ni/ h -金刚石在900℃退火温度下的欧姆接触特性。利用实测的电流-电压曲线和推导出的接触电阻ρC来评价接触性能的好坏。接收态和300℃退火的Ni/ h -金刚石形成肖特基触点。当退火温度提高到500℃时,Ni/ h -金刚石形成欧姆接触性质,ρC为1.5 × 10−3 Ω·cm2。当退火温度升至900℃时,ρC可低至6.0 × 10−5 Ω·cm2。认为Ni/ h -金刚石界面处Ni相关碳化物的形成促进了ρC的降低。镍金属极有希望在高达900°C的温度下用作h -金刚石基电子器件的欧姆接触电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliable Ohmic Contact Properties for Ni/Hydrogen-Terminated Diamond at Annealing Temperature up to 900 °C
Ohmic contact with high thermal stability is essential to promote hydrogen-terminated diamond (H-diamond) electronic devices for high-temperature applications. Here, the ohmic contact characteristics of Ni/H-diamond at annealing temperatures up to 900 °C are investigated. The measured current–voltage curves and deduced specific contact resistance (ρC) are used to evaluate the quality of the contact properties. Schottky contacts are formed for the as-received and 300 °C-annealed Ni/H-diamonds. When the annealing temperature is increased to 500 °C, the ohmic contact properties are formed with the ρC of 1.5 × 10−3 Ω·cm2 for the Ni/H-diamond. As the annealing temperature rises to 900 °C, the ρC is determined to be as low as 6.0 × 10−5 Ω·cm2. It is believed that the formation of Ni-related carbides at the Ni/H-diamond interface promotes the decrease in ρC. The Ni metal is extremely promising to be used as the ohmic contact electrode for the H-diamond-based electronic devices at temperature up to 900 °C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anticorrosion Property of Alcohol Amine Modified Phosphoric and Tannic Acid Based Rust Converter and Its Waterborne Polymer-Based Paint for Carbon Steel Comprehensive Data Collection Device for Plasma Equipment Intelligence Studies Coffee Wastes as Sustainable Flame Retardants for Polymer Materials Numerical Investigation on the Evaporation Performance of Desulfurization Wastewater in a Spray Drying Tower without Deflectors Effect of Assembly Unit of Expansive Agents on the Mechanical Performance and Durability of Cement-Based Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1