从MLE到EM再到VAE的道路:一个简短的教程

Ming Ding
{"title":"从MLE到EM再到VAE的道路:一个简短的教程","authors":"Ming Ding","doi":"10.1016/j.aiopen.2021.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Variational Auto-Encoders (VAEs) have emerged as one of the most popular genres of <em>generative models</em>, which are learned to characterize the data distribution. The classic Expectation Maximization (EM) algorithm aims to learn models with hidden variables. Essentially, both of them are iteratively optimizing the <em>evidence lower bound</em> (ELBO) to maximize to the likelihood of the observed data.</p><p>This short tutorial joins them up into a line and offer a good way to thoroughly understand EM and VAE with minimal knowledge. It is especially helpful to beginners and readers with experiences in machine learning applications but no statistics background.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 29-34"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651021000279/pdfft?md5=8f78a90e4fd74243d885b738de1fe94e&pid=1-s2.0-S2666651021000279-main.pdf","citationCount":"6","resultStr":"{\"title\":\"The road from MLE to EM to VAE: A brief tutorial\",\"authors\":\"Ming Ding\",\"doi\":\"10.1016/j.aiopen.2021.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Variational Auto-Encoders (VAEs) have emerged as one of the most popular genres of <em>generative models</em>, which are learned to characterize the data distribution. The classic Expectation Maximization (EM) algorithm aims to learn models with hidden variables. Essentially, both of them are iteratively optimizing the <em>evidence lower bound</em> (ELBO) to maximize to the likelihood of the observed data.</p><p>This short tutorial joins them up into a line and offer a good way to thoroughly understand EM and VAE with minimal knowledge. It is especially helpful to beginners and readers with experiences in machine learning applications but no statistics background.</p></div>\",\"PeriodicalId\":100068,\"journal\":{\"name\":\"AI Open\",\"volume\":\"3 \",\"pages\":\"Pages 29-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666651021000279/pdfft?md5=8f78a90e4fd74243d885b738de1fe94e&pid=1-s2.0-S2666651021000279-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666651021000279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651021000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

变分自编码器(VAEs)已经成为生成模型中最流行的类型之一,它被用来表征数据分布。经典的期望最大化(EM)算法旨在学习具有隐变量的模型。本质上,它们都是迭代优化证据下限(ELBO),以最大化观测数据的可能性。这个简短的教程将它们连接成一条线,并提供了一个用最少的知识彻底理解EM和VAE的好方法。它对初学者和有机器学习应用经验但没有统计学背景的读者特别有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The road from MLE to EM to VAE: A brief tutorial

Variational Auto-Encoders (VAEs) have emerged as one of the most popular genres of generative models, which are learned to characterize the data distribution. The classic Expectation Maximization (EM) algorithm aims to learn models with hidden variables. Essentially, both of them are iteratively optimizing the evidence lower bound (ELBO) to maximize to the likelihood of the observed data.

This short tutorial joins them up into a line and offer a good way to thoroughly understand EM and VAE with minimal knowledge. It is especially helpful to beginners and readers with experiences in machine learning applications but no statistics background.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
期刊最新文献
GPT understands, too Adaptive negative representations for graph contrastive learning PM2.5 forecasting under distribution shift: A graph learning approach Enhancing neural network classification using fractional-order activation functions CPT: Colorful Prompt Tuning for pre-trained vision-language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1