社会感知中虚假信息检测与真相发现的统一视角:综述

Fan Xu, V. Sheng, Mingwen Wang
{"title":"社会感知中虚假信息检测与真相发现的统一视角:综述","authors":"Fan Xu, V. Sheng, Mingwen Wang","doi":"10.1145/3477138","DOIUrl":null,"url":null,"abstract":"With the proliferation of social sensing, large amounts of observation are contributed by people or devices. However, these observations contain disinformation. Disinformation can propagate across online social networks at a relatively low cost, but result in a series of major problems in our society. In this survey, we provide a comprehensive overview of disinformation and truth discovery in social sensing under a unified perspective, including basic concepts and the taxonomy of existing methodologies. Furthermore, we summarize the mechanism of disinformation from four different perspectives (i.e., text only, text with image/multi-modal, text with propagation, and fusion models). In addition, we review existing solutions based on these requirements and compare their pros and cons and give a sort of guide to usage based on a detailed lesson learned. To facilitate future studies in this field, we summarize related publicly accessible real-world data sets and open source codes. Last but the most important, we emphasize potential future research topics and challenges in this domain through a deep analysis of most recent methods.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"1 1","pages":"1 - 33"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Unified Perspective for Disinformation Detection and Truth Discovery in Social Sensing: A Survey\",\"authors\":\"Fan Xu, V. Sheng, Mingwen Wang\",\"doi\":\"10.1145/3477138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the proliferation of social sensing, large amounts of observation are contributed by people or devices. However, these observations contain disinformation. Disinformation can propagate across online social networks at a relatively low cost, but result in a series of major problems in our society. In this survey, we provide a comprehensive overview of disinformation and truth discovery in social sensing under a unified perspective, including basic concepts and the taxonomy of existing methodologies. Furthermore, we summarize the mechanism of disinformation from four different perspectives (i.e., text only, text with image/multi-modal, text with propagation, and fusion models). In addition, we review existing solutions based on these requirements and compare their pros and cons and give a sort of guide to usage based on a detailed lesson learned. To facilitate future studies in this field, we summarize related publicly accessible real-world data sets and open source codes. Last but the most important, we emphasize potential future research topics and challenges in this domain through a deep analysis of most recent methods.\",\"PeriodicalId\":7000,\"journal\":{\"name\":\"ACM Computing Surveys (CSUR)\",\"volume\":\"1 1\",\"pages\":\"1 - 33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys (CSUR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3477138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys (CSUR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

随着社会传感的普及,大量的观测是由人或设备贡献的。然而,这些观察含有虚假信息。虚假信息可以以相对较低的成本在网络社交网络上传播,但却给我们的社会带来了一系列重大问题。在本调查中,我们从一个统一的角度对社会感知中的虚假信息和真相发现进行了全面的概述,包括基本概念和现有方法的分类。此外,我们从四个不同的角度(即纯文本、带有图像/多模态的文本、带有传播模型的文本和融合模型)总结了虚假信息的机制。此外,我们将根据这些需求回顾现有的解决方案,比较它们的优缺点,并根据所获得的详细经验给出一种使用指南。为了促进这一领域的未来研究,我们总结了相关的可公开访问的真实世界数据集和开源代码。最后但最重要的是,我们通过对最新方法的深入分析,强调了该领域潜在的未来研究主题和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Unified Perspective for Disinformation Detection and Truth Discovery in Social Sensing: A Survey
With the proliferation of social sensing, large amounts of observation are contributed by people or devices. However, these observations contain disinformation. Disinformation can propagate across online social networks at a relatively low cost, but result in a series of major problems in our society. In this survey, we provide a comprehensive overview of disinformation and truth discovery in social sensing under a unified perspective, including basic concepts and the taxonomy of existing methodologies. Furthermore, we summarize the mechanism of disinformation from four different perspectives (i.e., text only, text with image/multi-modal, text with propagation, and fusion models). In addition, we review existing solutions based on these requirements and compare their pros and cons and give a sort of guide to usage based on a detailed lesson learned. To facilitate future studies in this field, we summarize related publicly accessible real-world data sets and open source codes. Last but the most important, we emphasize potential future research topics and challenges in this domain through a deep analysis of most recent methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Comparisons of Clustering Approaches for Data Representation On the Structure of the Boolean Satisfiability Problem: A Survey A Brief Overview of Universal Sentence Representation Methods: A Linguistic View The Eye in Extended Reality: A Survey on Gaze Interaction and Eye Tracking in Head-worn Extended Reality A Comprehensive Report on Machine Learning-based Early Detection of Alzheimer's Disease using Multi-modal Neuroimaging Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1