{"title":"原位氧化脱羧法制备热稳定的有机-无机杂化纳米复合材料","authors":"Zahra Shareh, Mehdi Zamani","doi":"10.1080/09276440.2023.2200600","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, the preparation of thermally stable organic-inorganic hybrid nanocomposites from chemically functionalized oxidized graphite is carried out by in-situ catalytic oxidative decarboxylation of 3,5-dinitrobenzoic acid (reactant) in the presence of potassium persulfate (oxidant), silver nitrate (catalyst) and graphite (support) under thermal or microwave conditions. The effects of heat transfer and dosages of reactant, catalyst and oxidant on the crystalline structure and the morphology of nanocomposites are studied in detail. The prepared nanocomposites are characterized by EDS, elemental mapping, FE-SEM, FT-IR and XRD. The thermal stability of nanocomposites is examined by TGA and DSC. EDS shows that nanocomposites are composed of C, O, N, S, K and Ag elements. FT-IR exhibits that the graphitic layers in nanocomposites are mainly oxidized and functionalized with carboxyl, carbonyl, hydroxyl, epoxy, sulfate, nitrate and nitroaryl groups. Addition of nitroaryl groups to nanocomposites is also supported by an increase found in their C and N contents. XRD demonstrates the coexistence of both oxidized amorphous carbon and graphite in combination with different levels of organic and inorganic phases. The prepared nanocomposites show good thermal stability. The total area of the DSC curve in these nanocomposites compared to graphite is enhanced. Graphical abstract","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":"37 1","pages":"1173 - 1200"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preparation of thermally stable organic-inorganic hybrid nanocomposites from chemically functionalized oxidized graphite by in situ catalytic oxidative decarboxylation\",\"authors\":\"Zahra Shareh, Mehdi Zamani\",\"doi\":\"10.1080/09276440.2023.2200600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, the preparation of thermally stable organic-inorganic hybrid nanocomposites from chemically functionalized oxidized graphite is carried out by in-situ catalytic oxidative decarboxylation of 3,5-dinitrobenzoic acid (reactant) in the presence of potassium persulfate (oxidant), silver nitrate (catalyst) and graphite (support) under thermal or microwave conditions. The effects of heat transfer and dosages of reactant, catalyst and oxidant on the crystalline structure and the morphology of nanocomposites are studied in detail. The prepared nanocomposites are characterized by EDS, elemental mapping, FE-SEM, FT-IR and XRD. The thermal stability of nanocomposites is examined by TGA and DSC. EDS shows that nanocomposites are composed of C, O, N, S, K and Ag elements. FT-IR exhibits that the graphitic layers in nanocomposites are mainly oxidized and functionalized with carboxyl, carbonyl, hydroxyl, epoxy, sulfate, nitrate and nitroaryl groups. Addition of nitroaryl groups to nanocomposites is also supported by an increase found in their C and N contents. XRD demonstrates the coexistence of both oxidized amorphous carbon and graphite in combination with different levels of organic and inorganic phases. The prepared nanocomposites show good thermal stability. The total area of the DSC curve in these nanocomposites compared to graphite is enhanced. Graphical abstract\",\"PeriodicalId\":10653,\"journal\":{\"name\":\"Composite Interfaces\",\"volume\":\"37 1\",\"pages\":\"1173 - 1200\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09276440.2023.2200600\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2200600","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Preparation of thermally stable organic-inorganic hybrid nanocomposites from chemically functionalized oxidized graphite by in situ catalytic oxidative decarboxylation
ABSTRACT In this study, the preparation of thermally stable organic-inorganic hybrid nanocomposites from chemically functionalized oxidized graphite is carried out by in-situ catalytic oxidative decarboxylation of 3,5-dinitrobenzoic acid (reactant) in the presence of potassium persulfate (oxidant), silver nitrate (catalyst) and graphite (support) under thermal or microwave conditions. The effects of heat transfer and dosages of reactant, catalyst and oxidant on the crystalline structure and the morphology of nanocomposites are studied in detail. The prepared nanocomposites are characterized by EDS, elemental mapping, FE-SEM, FT-IR and XRD. The thermal stability of nanocomposites is examined by TGA and DSC. EDS shows that nanocomposites are composed of C, O, N, S, K and Ag elements. FT-IR exhibits that the graphitic layers in nanocomposites are mainly oxidized and functionalized with carboxyl, carbonyl, hydroxyl, epoxy, sulfate, nitrate and nitroaryl groups. Addition of nitroaryl groups to nanocomposites is also supported by an increase found in their C and N contents. XRD demonstrates the coexistence of both oxidized amorphous carbon and graphite in combination with different levels of organic and inorganic phases. The prepared nanocomposites show good thermal stability. The total area of the DSC curve in these nanocomposites compared to graphite is enhanced. Graphical abstract
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields