病理性 tau 蛋白的分泌和扩散机制。

Cecilia A Brunello, Maria Merezhko, Riikka-Liisa Uronen, Henri J Huttunen
{"title":"病理性 tau 蛋白的分泌和扩散机制。","authors":"Cecilia A Brunello, Maria Merezhko, Riikka-Liisa Uronen, Henri J Huttunen","doi":"10.1007/s00018-019-03349-1","DOIUrl":null,"url":null,"abstract":"<p><p>Accumulation of misfolded and aggregated forms of tau protein in the brain is a neuropathological hallmark of tauopathies, such as Alzheimer's disease and frontotemporal lobar degeneration. Tau aggregates have the ability to transfer from one cell to another and to induce templated misfolding and aggregation of healthy tau molecules in previously healthy cells, thereby propagating tau pathology across different brain areas in a prion-like manner. The molecular mechanisms involved in cell-to-cell transfer of tau aggregates are diverse, not mutually exclusive and only partially understood. Intracellular accumulation of misfolded tau induces several mechanisms that aim to reduce the cellular burden of aggregated proteins and also promote secretion of tau aggregates. However, tau may also be released from cells physiologically unrelated to protein aggregation. Tau secretion involves multiple vesicular and non-vesicle-mediated pathways, including secretion directly through the plasma membrane. Consequently, extracellular tau can be found in various forms, both as a free protein and in vesicles, such as exosomes and ectosomes. Once in the extracellular space, tau aggregates can be internalized by neighboring cells, both neurons and glial cells, via endocytic, pinocytic and phagocytic mechanisms. Importantly, accumulating evidence suggests that prion-like propagation of misfolding protein pathology could provide a general mechanism for disease progression in tauopathies and other related neurodegenerative diseases. Here, we review the recent literature on cellular mechanisms involved in cell-to-cell transfer of tau, with a particular focus in tau secretion.</p>","PeriodicalId":19075,"journal":{"name":"Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie","volume":"192 1","pages":"1721-1744"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190606/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of secretion and spreading of pathological tau protein.\",\"authors\":\"Cecilia A Brunello, Maria Merezhko, Riikka-Liisa Uronen, Henri J Huttunen\",\"doi\":\"10.1007/s00018-019-03349-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accumulation of misfolded and aggregated forms of tau protein in the brain is a neuropathological hallmark of tauopathies, such as Alzheimer's disease and frontotemporal lobar degeneration. Tau aggregates have the ability to transfer from one cell to another and to induce templated misfolding and aggregation of healthy tau molecules in previously healthy cells, thereby propagating tau pathology across different brain areas in a prion-like manner. The molecular mechanisms involved in cell-to-cell transfer of tau aggregates are diverse, not mutually exclusive and only partially understood. Intracellular accumulation of misfolded tau induces several mechanisms that aim to reduce the cellular burden of aggregated proteins and also promote secretion of tau aggregates. However, tau may also be released from cells physiologically unrelated to protein aggregation. Tau secretion involves multiple vesicular and non-vesicle-mediated pathways, including secretion directly through the plasma membrane. Consequently, extracellular tau can be found in various forms, both as a free protein and in vesicles, such as exosomes and ectosomes. Once in the extracellular space, tau aggregates can be internalized by neighboring cells, both neurons and glial cells, via endocytic, pinocytic and phagocytic mechanisms. Importantly, accumulating evidence suggests that prion-like propagation of misfolding protein pathology could provide a general mechanism for disease progression in tauopathies and other related neurodegenerative diseases. Here, we review the recent literature on cellular mechanisms involved in cell-to-cell transfer of tau, with a particular focus in tau secretion.</p>\",\"PeriodicalId\":19075,\"journal\":{\"name\":\"Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie\",\"volume\":\"192 1\",\"pages\":\"1721-1744\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190606/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00018-019-03349-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-019-03349-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/10/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

tau蛋白在大脑中的错误折叠和聚集是阿尔茨海默病和额颞叶变性等tau病的神经病理学特征。Tau 蛋白聚集体能够从一个细胞转移到另一个细胞,并在先前健康的细胞中诱导健康的 Tau 蛋白分子模板化错误折叠和聚集,从而以类似朊病毒的方式在不同脑区传播 Tau 蛋白病理学。细胞间 tau 聚集体转移所涉及的分子机制多种多样,并不相互排斥,而且只得到了部分了解。折叠错误的 tau 在细胞内积聚会诱发多种机制,旨在减少聚集蛋白的细胞负担,同时促进 tau 聚集物的分泌。然而,tau 也可能从细胞中释放出来,这与蛋白质聚集的生理过程无关。Tau 的分泌涉及多种囊泡和非囊泡介导的途径,包括直接通过质膜分泌。因此,细胞外的 tau 可以以各种形式存在,既可以是游离蛋白,也可以是囊泡,如外泌体和外泌体。一旦进入细胞外空间,tau聚集体就会通过内吞、针刺和吞噬机制被邻近细胞(包括神经元和神经胶质细胞)内化。重要的是,越来越多的证据表明,错误折叠蛋白病理学的朊病毒样传播可能为tau病和其他相关神经退行性疾病的疾病进展提供了一种普遍机制。在此,我们回顾了有关细胞间 tau 转移的细胞机制的最新文献,尤其侧重于 tau 的分泌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms of secretion and spreading of pathological tau protein.

Accumulation of misfolded and aggregated forms of tau protein in the brain is a neuropathological hallmark of tauopathies, such as Alzheimer's disease and frontotemporal lobar degeneration. Tau aggregates have the ability to transfer from one cell to another and to induce templated misfolding and aggregation of healthy tau molecules in previously healthy cells, thereby propagating tau pathology across different brain areas in a prion-like manner. The molecular mechanisms involved in cell-to-cell transfer of tau aggregates are diverse, not mutually exclusive and only partially understood. Intracellular accumulation of misfolded tau induces several mechanisms that aim to reduce the cellular burden of aggregated proteins and also promote secretion of tau aggregates. However, tau may also be released from cells physiologically unrelated to protein aggregation. Tau secretion involves multiple vesicular and non-vesicle-mediated pathways, including secretion directly through the plasma membrane. Consequently, extracellular tau can be found in various forms, both as a free protein and in vesicles, such as exosomes and ectosomes. Once in the extracellular space, tau aggregates can be internalized by neighboring cells, both neurons and glial cells, via endocytic, pinocytic and phagocytic mechanisms. Importantly, accumulating evidence suggests that prion-like propagation of misfolding protein pathology could provide a general mechanism for disease progression in tauopathies and other related neurodegenerative diseases. Here, we review the recent literature on cellular mechanisms involved in cell-to-cell transfer of tau, with a particular focus in tau secretion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acupuncture as a Complementary Treatment for Leg Ulcers in Sickle-Cell Disease. Mechanisms of secretion and spreading of pathological tau protein. Micronutrient powder use in Arequipa, Peru: Barriers and enablers across multiple levels. Murine Model of Maternal Immunization Demonstrates Protective Role for Antibodies That Mediate Antibody-Dependent Cellular Cytotoxicity in Protecting Neonates From Herpes Simplex Virus Type 1 and Type 2. Interval training elicits higher enjoyment versus moderate exercise in persons with spinal cord injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1