{"title":"基于地面轨迹作业的数据链需求分析和优势","authors":"C. Wargo, P. Hurley","doi":"10.1109/AERO.2012.6187149","DOIUrl":null,"url":null,"abstract":"One of the envisioned improvements for achieving the goals of the Next Generation (NextGen) Air Transport Systems is based upon the use of a managed surface trajectory-based operation (STBO) for the high density airports. The STBO concept uses a time-metered conflict free taxi route that is optimized to improve capacity based upon real-time events occurring at the airport and in terminal area. The improvement is accomplished by modeling the real-time events that cause congestion in use of ramp, taxi and runway resources. The optimized taxi route is dependent upon the state of these real-time events. The use of a data link between the ground-based air traffic management automation's decision support tools (DSTs) and the aircraft avionics will be crucial to the sharing of the optimized taxi route. We present the STBO benefit results for a full approach derived from modeling the STBO approach using trial data. The approach taken to link the ground-based DSTs to improvements in cockpit avionics will set the practical limits expected for operation efficiency. The requirements for the STBO use of data link are more than just the parameters of the communication channel. For our study we have used trial results to forecast the benefits of the time-metered surface trajectory. We then assess the requirements placed upon the data link and develop a set of options in the procedures to transfer the route into the cockpit avionics. We also review the approach being taken by standards for the in-air use of data link for trajectory operations and assess the acceptability of using a similar approach for STBO. The importance of linking the Communications, Navigation, and Surveillance (CNS) to the airport and aircraft capabilities to perform time-metered operations is highlighted as being the key aspect of the pilot's ability to perform STBO surface navigation.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":"16 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data link requirements analysis and benefits of a surface trajectory-based operation\",\"authors\":\"C. Wargo, P. Hurley\",\"doi\":\"10.1109/AERO.2012.6187149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the envisioned improvements for achieving the goals of the Next Generation (NextGen) Air Transport Systems is based upon the use of a managed surface trajectory-based operation (STBO) for the high density airports. The STBO concept uses a time-metered conflict free taxi route that is optimized to improve capacity based upon real-time events occurring at the airport and in terminal area. The improvement is accomplished by modeling the real-time events that cause congestion in use of ramp, taxi and runway resources. The optimized taxi route is dependent upon the state of these real-time events. The use of a data link between the ground-based air traffic management automation's decision support tools (DSTs) and the aircraft avionics will be crucial to the sharing of the optimized taxi route. We present the STBO benefit results for a full approach derived from modeling the STBO approach using trial data. The approach taken to link the ground-based DSTs to improvements in cockpit avionics will set the practical limits expected for operation efficiency. The requirements for the STBO use of data link are more than just the parameters of the communication channel. For our study we have used trial results to forecast the benefits of the time-metered surface trajectory. We then assess the requirements placed upon the data link and develop a set of options in the procedures to transfer the route into the cockpit avionics. We also review the approach being taken by standards for the in-air use of data link for trajectory operations and assess the acceptability of using a similar approach for STBO. The importance of linking the Communications, Navigation, and Surveillance (CNS) to the airport and aircraft capabilities to perform time-metered operations is highlighted as being the key aspect of the pilot's ability to perform STBO surface navigation.\",\"PeriodicalId\":6421,\"journal\":{\"name\":\"2012 IEEE Aerospace Conference\",\"volume\":\"16 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2012.6187149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data link requirements analysis and benefits of a surface trajectory-based operation
One of the envisioned improvements for achieving the goals of the Next Generation (NextGen) Air Transport Systems is based upon the use of a managed surface trajectory-based operation (STBO) for the high density airports. The STBO concept uses a time-metered conflict free taxi route that is optimized to improve capacity based upon real-time events occurring at the airport and in terminal area. The improvement is accomplished by modeling the real-time events that cause congestion in use of ramp, taxi and runway resources. The optimized taxi route is dependent upon the state of these real-time events. The use of a data link between the ground-based air traffic management automation's decision support tools (DSTs) and the aircraft avionics will be crucial to the sharing of the optimized taxi route. We present the STBO benefit results for a full approach derived from modeling the STBO approach using trial data. The approach taken to link the ground-based DSTs to improvements in cockpit avionics will set the practical limits expected for operation efficiency. The requirements for the STBO use of data link are more than just the parameters of the communication channel. For our study we have used trial results to forecast the benefits of the time-metered surface trajectory. We then assess the requirements placed upon the data link and develop a set of options in the procedures to transfer the route into the cockpit avionics. We also review the approach being taken by standards for the in-air use of data link for trajectory operations and assess the acceptability of using a similar approach for STBO. The importance of linking the Communications, Navigation, and Surveillance (CNS) to the airport and aircraft capabilities to perform time-metered operations is highlighted as being the key aspect of the pilot's ability to perform STBO surface navigation.