{"title":"理想的髋关节外骨骼在行走过程中的优化扭矩辅助","authors":"Neethan Ratnakumar, Xianlian Zhou","doi":"10.1115/detc2021-71376","DOIUrl":null,"url":null,"abstract":"\n The hip muscles account for a great percentage of the total human energy expenditure during walking and many wearable devices have been developed in assisting the hip joint to reduce the metabolic Cost Of Transport (COT) for walking. However, the effectiveness of assisting the hip in only one direction (either flexion or extension) or both directions has not been systematically studied and the underlying muscle mechanics and energetics affected by the assistance are not well understood. In this study, human-exoskeleton simulation based optimizations were performed to find optimized hip assistance torque profiles for (1) unidirectional flexion assistance, (2) unidirectional extension assistance, and (3) bidirectional flexion and extension assistance. Our results show that the bidirectional assistance is the most effective in reducing the COT of walking (22.7% reduction) followed by flexion (19.2%) and extension (11.7%). The flexion assistance resulted in more COT saving than the output of its net work by 35.9%, which indicates that the negative work done (42.2% of its positive counterpart) also played an important role in reducing the COT. The bidirectional assistance also reduced the activations of the hip extensors to a great extent and shifted the activation pattern of the hip flexor (ilipsoas). These results can provide valuable information for optimal hip actuation (timing and profiles) and help exoskeleton designers make informed decisions.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimized Torque Assistance During Walking With an Idealized Hip Exoskeleton\",\"authors\":\"Neethan Ratnakumar, Xianlian Zhou\",\"doi\":\"10.1115/detc2021-71376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The hip muscles account for a great percentage of the total human energy expenditure during walking and many wearable devices have been developed in assisting the hip joint to reduce the metabolic Cost Of Transport (COT) for walking. However, the effectiveness of assisting the hip in only one direction (either flexion or extension) or both directions has not been systematically studied and the underlying muscle mechanics and energetics affected by the assistance are not well understood. In this study, human-exoskeleton simulation based optimizations were performed to find optimized hip assistance torque profiles for (1) unidirectional flexion assistance, (2) unidirectional extension assistance, and (3) bidirectional flexion and extension assistance. Our results show that the bidirectional assistance is the most effective in reducing the COT of walking (22.7% reduction) followed by flexion (19.2%) and extension (11.7%). The flexion assistance resulted in more COT saving than the output of its net work by 35.9%, which indicates that the negative work done (42.2% of its positive counterpart) also played an important role in reducing the COT. The bidirectional assistance also reduced the activations of the hip extensors to a great extent and shifted the activation pattern of the hip flexor (ilipsoas). These results can provide valuable information for optimal hip actuation (timing and profiles) and help exoskeleton designers make informed decisions.\",\"PeriodicalId\":23602,\"journal\":{\"name\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-71376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-71376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimized Torque Assistance During Walking With an Idealized Hip Exoskeleton
The hip muscles account for a great percentage of the total human energy expenditure during walking and many wearable devices have been developed in assisting the hip joint to reduce the metabolic Cost Of Transport (COT) for walking. However, the effectiveness of assisting the hip in only one direction (either flexion or extension) or both directions has not been systematically studied and the underlying muscle mechanics and energetics affected by the assistance are not well understood. In this study, human-exoskeleton simulation based optimizations were performed to find optimized hip assistance torque profiles for (1) unidirectional flexion assistance, (2) unidirectional extension assistance, and (3) bidirectional flexion and extension assistance. Our results show that the bidirectional assistance is the most effective in reducing the COT of walking (22.7% reduction) followed by flexion (19.2%) and extension (11.7%). The flexion assistance resulted in more COT saving than the output of its net work by 35.9%, which indicates that the negative work done (42.2% of its positive counterpart) also played an important role in reducing the COT. The bidirectional assistance also reduced the activations of the hip extensors to a great extent and shifted the activation pattern of the hip flexor (ilipsoas). These results can provide valuable information for optimal hip actuation (timing and profiles) and help exoskeleton designers make informed decisions.