第四代快堆核数据不确定性临界计算分析比较

D. G. Chereshkov, Ternovykh Mikhail Ternovykh, G. Tikhomirov, Aleksandr Aleksandrovich Ryzhkov
{"title":"第四代快堆核数据不确定性临界计算分析比较","authors":"D. G. Chereshkov, Ternovykh Mikhail Ternovykh, G. Tikhomirov, Aleksandr Aleksandrovich Ryzhkov","doi":"10.26583/npe.2023.1.14","DOIUrl":null,"url":null,"abstract":"The new calculation code capabilities are applied in the current work as well as important fast reactor criticality parameters uncertainty assessment articles’ results based on different nuclear data libraries and covariance matrices. A comparative analysis of uncertainty estimations related to neutron reactions is presented for lead-cooled reactor models and sodium-cooled reactor models. For the models of advanced BN and BR fast reactors with three fuel types (UO 2 , MOX, MNUP), the multiplication factor uncertainty calculations are performed using 252-group covariance matrices based on ENDF/B-VII.1 library via the SCALE 6.2.4 code system. The main nuclear data uncertainty contributors in the multiplication factor are determined. Recommendations are formulated for improving the cross sections accuracy for several nuclides in order to provide more reliable results of fast reactor criticality calculations. Lead-cooled reactors have no operational history compared to light-water and sodium-cooled reactors. The experimental data insufficiency calls in the question about reliability of the simulation results and requires a comprehensive initial data uncertainty analysis for the neutron transport simulation. The obtained results support the idea that lead-and sodium-cooled reactors have close nuclear data sensitivity using one and the same computation tools, nuclear data libraries and fuel compositions. This makes it possible to use the accumulated data of benchmarks for sodium-cooled reactors in the safety determination of lead-cooled reactors.","PeriodicalId":37826,"journal":{"name":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nuclear Data Uncertainty on Generation IV Fast Reactors Criticality Calculations Analysis Comparison\",\"authors\":\"D. G. Chereshkov, Ternovykh Mikhail Ternovykh, G. Tikhomirov, Aleksandr Aleksandrovich Ryzhkov\",\"doi\":\"10.26583/npe.2023.1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new calculation code capabilities are applied in the current work as well as important fast reactor criticality parameters uncertainty assessment articles’ results based on different nuclear data libraries and covariance matrices. A comparative analysis of uncertainty estimations related to neutron reactions is presented for lead-cooled reactor models and sodium-cooled reactor models. For the models of advanced BN and BR fast reactors with three fuel types (UO 2 , MOX, MNUP), the multiplication factor uncertainty calculations are performed using 252-group covariance matrices based on ENDF/B-VII.1 library via the SCALE 6.2.4 code system. The main nuclear data uncertainty contributors in the multiplication factor are determined. Recommendations are formulated for improving the cross sections accuracy for several nuclides in order to provide more reliable results of fast reactor criticality calculations. Lead-cooled reactors have no operational history compared to light-water and sodium-cooled reactors. The experimental data insufficiency calls in the question about reliability of the simulation results and requires a comprehensive initial data uncertainty analysis for the neutron transport simulation. The obtained results support the idea that lead-and sodium-cooled reactors have close nuclear data sensitivity using one and the same computation tools, nuclear data libraries and fuel compositions. This makes it possible to use the accumulated data of benchmarks for sodium-cooled reactors in the safety determination of lead-cooled reactors.\",\"PeriodicalId\":37826,\"journal\":{\"name\":\"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26583/npe.2023.1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/npe.2023.1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1

摘要

新的计算代码功能已应用于目前的工作以及基于不同核数据库和协方差矩阵的重要快堆临界参数不确定性评估文章的结果。对铅冷堆模型和钠冷堆模型的中子反应不确定度进行了比较分析。针对三种燃料类型(UO 2、MOX、MNUP)的先进BN和BR快堆模型,采用基于ENDF/B-VII的252组协方差矩阵进行乘法因子不确定性计算。1库通过SCALE 6.2.4代码系统。确定了乘法因子中核数据不确定度的主要贡献因子。为了提供更可靠的快堆临界计算结果,提出了改进几种核素截面精度的建议。与轻水和钠冷却反应堆相比,铅冷却反应堆没有运行历史。实验数据的不足使模拟结果的可靠性受到质疑,需要对中子输运模拟的初始数据进行全面的不确定性分析。所获得的结果支持这样一种观点,即使用相同的计算工具、核数据库和燃料成分,铅钠冷却反应堆具有接近的核数据敏感性。这使得利用钠冷却堆的基准累积数据来确定铅冷却堆的安全性成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nuclear Data Uncertainty on Generation IV Fast Reactors Criticality Calculations Analysis Comparison
The new calculation code capabilities are applied in the current work as well as important fast reactor criticality parameters uncertainty assessment articles’ results based on different nuclear data libraries and covariance matrices. A comparative analysis of uncertainty estimations related to neutron reactions is presented for lead-cooled reactor models and sodium-cooled reactor models. For the models of advanced BN and BR fast reactors with three fuel types (UO 2 , MOX, MNUP), the multiplication factor uncertainty calculations are performed using 252-group covariance matrices based on ENDF/B-VII.1 library via the SCALE 6.2.4 code system. The main nuclear data uncertainty contributors in the multiplication factor are determined. Recommendations are formulated for improving the cross sections accuracy for several nuclides in order to provide more reliable results of fast reactor criticality calculations. Lead-cooled reactors have no operational history compared to light-water and sodium-cooled reactors. The experimental data insufficiency calls in the question about reliability of the simulation results and requires a comprehensive initial data uncertainty analysis for the neutron transport simulation. The obtained results support the idea that lead-and sodium-cooled reactors have close nuclear data sensitivity using one and the same computation tools, nuclear data libraries and fuel compositions. This makes it possible to use the accumulated data of benchmarks for sodium-cooled reactors in the safety determination of lead-cooled reactors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika
Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika Energy-Nuclear Energy and Engineering
CiteScore
0.40
自引率
0.00%
发文量
30
期刊介绍: The scientific journal Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika is included in the Scopus database. Publisher country is RU. The main subject areas of published articles are Nuclear Energy and Engineering, Физика, Приборостроение, метрология и информационно-измерительные приборы и системы, Информатика, вычислительная техника и управление, Энергетика. Before sending a scientific article, we recommend you to read the section For authors. This will allow you to prepare an article better for publication, to make it more interesting for the readers and useful for the scientific community. By following these steps, you will greatly increase the likelihood of your scientific article publishing in journals included in international citation systems (e.g., Scopus). Then you may choose a different journal, select the journal included to list of SAC Russia journal list, or send your scientific work for review and publication.
期刊最新文献
Studies of the BN-350 Reactor Fuel, Structural and Absorbing Materials at the Hot Laboratory of the IPPE Study into the dependence of the Co-60 and Lu-177g efficiency production on the energy structure of neutron flux density On Dilation of the BN-350 Reactor Fuel Assemblies Reprocessing of Primary and Secondary Coolants During the BN-350 Reactor Decommissioning Principles of Construction and Development of an Automatic Protection System for Steam Generators of Fast Reactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1