初等分析中的自然风格证明技术

T. Jebelean
{"title":"初等分析中的自然风格证明技术","authors":"T. Jebelean","doi":"10.1145/3313880.3313892","DOIUrl":null,"url":null,"abstract":"Combining methods from satisfiability checking with methods from symbolic computation promises to solve challenging problems in various areas of theory and application. We look at the basically equivalent problem of proving statements directly in a non-clausal setting, when additional information on the underlying domain is available in form of specific properties and algorithms. We demonstrate on a concrete example several heuristic techniques for the automation of natural-style proving of statements from elementary analysis. The purpose of this work in progress is to generate proofs similar to those produced by humans, by combining automated reasoning methods with techniques from computer algebra. Our techniques include: the S-decomposition method for formulae with alternating quantifiers, quantifier elimination by cylindrical algebraic decomposition, analysis of terms behaviour in zero, bounding the ∈-bounds, rewriting of expressions involving absolute value, algebraic manipulations, and identification of equal terms under unknown functions. These techniques are being implemented in the Theorema system and are able to construct automatically natural-style proofs for numerous examples including: convergence of sequences, limits and continuity of functions, uniform continuity, and other.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"18 1","pages":"92-95"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Techniques for natural-style proofs in elementary analysis\",\"authors\":\"T. Jebelean\",\"doi\":\"10.1145/3313880.3313892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining methods from satisfiability checking with methods from symbolic computation promises to solve challenging problems in various areas of theory and application. We look at the basically equivalent problem of proving statements directly in a non-clausal setting, when additional information on the underlying domain is available in form of specific properties and algorithms. We demonstrate on a concrete example several heuristic techniques for the automation of natural-style proving of statements from elementary analysis. The purpose of this work in progress is to generate proofs similar to those produced by humans, by combining automated reasoning methods with techniques from computer algebra. Our techniques include: the S-decomposition method for formulae with alternating quantifiers, quantifier elimination by cylindrical algebraic decomposition, analysis of terms behaviour in zero, bounding the ∈-bounds, rewriting of expressions involving absolute value, algebraic manipulations, and identification of equal terms under unknown functions. These techniques are being implemented in the Theorema system and are able to construct automatically natural-style proofs for numerous examples including: convergence of sequences, limits and continuity of functions, uniform continuity, and other.\",\"PeriodicalId\":7093,\"journal\":{\"name\":\"ACM Commun. Comput. Algebra\",\"volume\":\"18 1\",\"pages\":\"92-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Commun. Comput. Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3313880.3313892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3313880.3313892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

将可满足性检验方法与符号计算方法相结合,有望解决各个理论和应用领域的挑战性问题。当底层领域的附加信息以特定属性和算法的形式可用时,我们将研究在非子句设置中直接证明语句的基本等效问题。我们在一个具体的例子上演示了几种启发式技术,用于从初等分析中自动证明语句的自然风格。这项正在进行的工作的目的是通过将自动推理方法与计算机代数技术相结合,生成类似于人类产生的证明。我们的技术包括:交替量词公式的s分解方法,通过圆柱代数分解消除量词,分析项在零处的行为,对∈界进行边界,重写涉及绝对值的表达式,代数处理,以及在未知函数下识别相等项。这些技术正在定理系统中实现,并且能够为许多示例自动构建自然风格的证明,包括:序列的收敛,函数的极限和连续性,一致连续性等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Techniques for natural-style proofs in elementary analysis
Combining methods from satisfiability checking with methods from symbolic computation promises to solve challenging problems in various areas of theory and application. We look at the basically equivalent problem of proving statements directly in a non-clausal setting, when additional information on the underlying domain is available in form of specific properties and algorithms. We demonstrate on a concrete example several heuristic techniques for the automation of natural-style proving of statements from elementary analysis. The purpose of this work in progress is to generate proofs similar to those produced by humans, by combining automated reasoning methods with techniques from computer algebra. Our techniques include: the S-decomposition method for formulae with alternating quantifiers, quantifier elimination by cylindrical algebraic decomposition, analysis of terms behaviour in zero, bounding the ∈-bounds, rewriting of expressions involving absolute value, algebraic manipulations, and identification of equal terms under unknown functions. These techniques are being implemented in the Theorema system and are able to construct automatically natural-style proofs for numerous examples including: convergence of sequences, limits and continuity of functions, uniform continuity, and other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multivariate ore polynomials in SageMath Certifying operator identities via noncommutative Gröbner bases A Kenzo interface for algebraic topology computations in SageMath The conference "computer algebra" in Moscow Computing generic bivariate Gröbner bases with Mathemagix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1