热胁迫诱导核应激体的形成机制及细胞功能

Yuichi Miyoshi, Kazunori Watanabe
{"title":"热胁迫诱导核应激体的形成机制及细胞功能","authors":"Yuichi Miyoshi, Kazunori Watanabe","doi":"10.3191/THERMALMED.34.23","DOIUrl":null,"url":null,"abstract":": Mammal possesses mechanisms that respond to environmental stresses, including heat, oxidation, radiation. Stress responses include cell death induction mechanism such as apoptosis and stress accommodation mechanism for survival. One of a major stress accommodation mechanism is formation of stress granules (SGs) and nuclear stress bodies (nSBs). SGs and nSBs, which are constituted by many proteins and RNAs, are reversible intracellular structures formed only when cells are exposed to environmental stresses. SGs, formed in the cytoplasm, have been found in a wide range of eukaryotes from yeast to humans. Intriguingly, nSBs, formed in the nucleus, have been found only in human cells. In this review, we focus on nSBs. nSBs were discovered in heat-stressed cells in 1989, and then many proteins and RNAs have been identified. Major components of nSBs are heat shock transcription factor family, splicing factors and noncoding RNAs (Satellite III RNA and initiator / elongator tRNA). Recently, many researchers have reported the formation mechanism of nSBs, however cellular functions of nSBs remain unclear. In this review, we introduce the basic researches focusing on the nSBs formation mechanism and cellular functions of nSBs constitution factors.","PeriodicalId":23299,"journal":{"name":"Thermal Medicine","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Formation Mechanism and Cellular Functions of Nuclear Stress Bodies Induced by Heat Stress\",\"authors\":\"Yuichi Miyoshi, Kazunori Watanabe\",\"doi\":\"10.3191/THERMALMED.34.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Mammal possesses mechanisms that respond to environmental stresses, including heat, oxidation, radiation. Stress responses include cell death induction mechanism such as apoptosis and stress accommodation mechanism for survival. One of a major stress accommodation mechanism is formation of stress granules (SGs) and nuclear stress bodies (nSBs). SGs and nSBs, which are constituted by many proteins and RNAs, are reversible intracellular structures formed only when cells are exposed to environmental stresses. SGs, formed in the cytoplasm, have been found in a wide range of eukaryotes from yeast to humans. Intriguingly, nSBs, formed in the nucleus, have been found only in human cells. In this review, we focus on nSBs. nSBs were discovered in heat-stressed cells in 1989, and then many proteins and RNAs have been identified. Major components of nSBs are heat shock transcription factor family, splicing factors and noncoding RNAs (Satellite III RNA and initiator / elongator tRNA). Recently, many researchers have reported the formation mechanism of nSBs, however cellular functions of nSBs remain unclear. In this review, we introduce the basic researches focusing on the nSBs formation mechanism and cellular functions of nSBs constitution factors.\",\"PeriodicalId\":23299,\"journal\":{\"name\":\"Thermal Medicine\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3191/THERMALMED.34.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3191/THERMALMED.34.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

哺乳动物具有对环境压力作出反应的机制,包括热、氧化、辐射。应激反应包括细胞凋亡等诱导死亡机制和生存的应激调节机制。应力颗粒(SGs)和核应力体(nsb)的形成是应力调节的主要机制之一。SGs和nsb是由多种蛋白质和rna组成的可逆细胞内结构,只有在细胞受到环境胁迫时才会形成。在细胞质中形成的SGs,已经在从酵母到人类的许多真核生物中发现。有趣的是,在细胞核中形成的nsb只在人类细胞中被发现。在这篇综述中,我们主要关注nsb。nsb于1989年在热应激细胞中被发现,随后被鉴定出许多蛋白质和rna。nsb的主要成分是热休克转录因子家族、剪接因子和非编码RNA (Satellite III RNA和启动子/延长子tRNA)。近年来,许多研究者报道了非nsb的形成机制,但其细胞功能尚不清楚。本文主要介绍了非甾体抗体形成机制和非甾体抗体构成因子的细胞功能等方面的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formation Mechanism and Cellular Functions of Nuclear Stress Bodies Induced by Heat Stress
: Mammal possesses mechanisms that respond to environmental stresses, including heat, oxidation, radiation. Stress responses include cell death induction mechanism such as apoptosis and stress accommodation mechanism for survival. One of a major stress accommodation mechanism is formation of stress granules (SGs) and nuclear stress bodies (nSBs). SGs and nSBs, which are constituted by many proteins and RNAs, are reversible intracellular structures formed only when cells are exposed to environmental stresses. SGs, formed in the cytoplasm, have been found in a wide range of eukaryotes from yeast to humans. Intriguingly, nSBs, formed in the nucleus, have been found only in human cells. In this review, we focus on nSBs. nSBs were discovered in heat-stressed cells in 1989, and then many proteins and RNAs have been identified. Major components of nSBs are heat shock transcription factor family, splicing factors and noncoding RNAs (Satellite III RNA and initiator / elongator tRNA). Recently, many researchers have reported the formation mechanism of nSBs, however cellular functions of nSBs remain unclear. In this review, we introduce the basic researches focusing on the nSBs formation mechanism and cellular functions of nSBs constitution factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
前立腺肥大症による中等度から重度の下部尿路症状に対する水蒸気温熱治療の多施設ランダム化偽対照比較試験の最終5年間の結果 低温プラズマおよびハイパーサーミア併用効果を用いたがん治療の可能性 Discovery of Mammalian HSP40 and Subsequent Progress 温度と光を感知し相分離する色素タンパク質フィトクロムB Engineering of Probiotic Bacteria System for the Temperature-sensitive Production of Immune Checkpoint Blockade Nanobodies by Intratumor Heating with Focused Ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1