{"title":"混合存储系统的资源分配模型","authors":"Hui Wang, P. Varman","doi":"10.1109/CCGrid.2015.132","DOIUrl":null,"url":null,"abstract":"Providing QoS guarantees for hybrid storage systems made up of both solid-state drives (SSDs) and hard disks (HDs) is a challenging problem. Since HDs and SSDs have widely different IOPS capacities, it is not sensible to treat the storage system as a monolithic black box, instead a useful QoS model must necessarily differentiate the IOs made to different device types. Traditional storage resource allocation models have largely been designed to provide QoS for a single resource type, and result in poor utilization and fairness when applied to multiple coupled resources. In this paper, we present a new resource allocation model for hybrid storage systems using a multi-resource framework. The model supports reservations and shares for clients sharing the storage system. Reservations specify the minimum throughput (IOPS) that a client must receive, while shares reflect its weight relative to other clients that are bottlenecked on the same device. We present a formal multi-resource allocation model to allocate IOPS to clients, together with an IO scheduling algorithm to maximize system throughput. The model and algorithms are validated with empirical results.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"108 1","pages":"91-100"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Resource Allocation Model for Hybrid Storage Systems\",\"authors\":\"Hui Wang, P. Varman\",\"doi\":\"10.1109/CCGrid.2015.132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Providing QoS guarantees for hybrid storage systems made up of both solid-state drives (SSDs) and hard disks (HDs) is a challenging problem. Since HDs and SSDs have widely different IOPS capacities, it is not sensible to treat the storage system as a monolithic black box, instead a useful QoS model must necessarily differentiate the IOs made to different device types. Traditional storage resource allocation models have largely been designed to provide QoS for a single resource type, and result in poor utilization and fairness when applied to multiple coupled resources. In this paper, we present a new resource allocation model for hybrid storage systems using a multi-resource framework. The model supports reservations and shares for clients sharing the storage system. Reservations specify the minimum throughput (IOPS) that a client must receive, while shares reflect its weight relative to other clients that are bottlenecked on the same device. We present a formal multi-resource allocation model to allocate IOPS to clients, together with an IO scheduling algorithm to maximize system throughput. The model and algorithms are validated with empirical results.\",\"PeriodicalId\":6664,\"journal\":{\"name\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"volume\":\"108 1\",\"pages\":\"91-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2015.132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Resource Allocation Model for Hybrid Storage Systems
Providing QoS guarantees for hybrid storage systems made up of both solid-state drives (SSDs) and hard disks (HDs) is a challenging problem. Since HDs and SSDs have widely different IOPS capacities, it is not sensible to treat the storage system as a monolithic black box, instead a useful QoS model must necessarily differentiate the IOs made to different device types. Traditional storage resource allocation models have largely been designed to provide QoS for a single resource type, and result in poor utilization and fairness when applied to multiple coupled resources. In this paper, we present a new resource allocation model for hybrid storage systems using a multi-resource framework. The model supports reservations and shares for clients sharing the storage system. Reservations specify the minimum throughput (IOPS) that a client must receive, while shares reflect its weight relative to other clients that are bottlenecked on the same device. We present a formal multi-resource allocation model to allocate IOPS to clients, together with an IO scheduling algorithm to maximize system throughput. The model and algorithms are validated with empirical results.