基于部分机器学习方法的雾检测与能见度增强

C. Lakshmi, D. Rao, G. Rao
{"title":"基于部分机器学习方法的雾检测与能见度增强","authors":"C. Lakshmi, D. Rao, G. Rao","doi":"10.1109/ICPCSI.2017.8391898","DOIUrl":null,"url":null,"abstract":"Fog detection and evaluation in critical conditions is a major challenge in current times. In this paper a modernized semi-automated machine learning technique for fog detection under the given scenario of back-veil scattering technique is discussed and evaluated. The observative research presents the overall scenario of detecting and analyzing the given input video, acquired and processed with faster capturing and the expected results are archived with experimental observations and comparative study. On a whole, the system is efficient in understanding and analyzing the visibility intensity and obstacle detection.","PeriodicalId":6589,"journal":{"name":"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)","volume":"9 1","pages":"1192-1194"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fog detection and visibility enhancement under partial machine learning approach\",\"authors\":\"C. Lakshmi, D. Rao, G. Rao\",\"doi\":\"10.1109/ICPCSI.2017.8391898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fog detection and evaluation in critical conditions is a major challenge in current times. In this paper a modernized semi-automated machine learning technique for fog detection under the given scenario of back-veil scattering technique is discussed and evaluated. The observative research presents the overall scenario of detecting and analyzing the given input video, acquired and processed with faster capturing and the expected results are archived with experimental observations and comparative study. On a whole, the system is efficient in understanding and analyzing the visibility intensity and obstacle detection.\",\"PeriodicalId\":6589,\"journal\":{\"name\":\"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)\",\"volume\":\"9 1\",\"pages\":\"1192-1194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPCSI.2017.8391898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPCSI.2017.8391898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

关键条件下的雾检测和评估是当前的主要挑战。本文讨论并评价了一种基于后掩膜散射技术的现代半自动化机器学习雾检测技术。观察性研究提供了对给定输入视频进行检测和分析的总体场景,以更快的捕获速度进行采集和处理,并通过实验观察和比较研究将预期结果存档。总的来说,该系统在理解和分析能见度强度和障碍物检测方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fog detection and visibility enhancement under partial machine learning approach
Fog detection and evaluation in critical conditions is a major challenge in current times. In this paper a modernized semi-automated machine learning technique for fog detection under the given scenario of back-veil scattering technique is discussed and evaluated. The observative research presents the overall scenario of detecting and analyzing the given input video, acquired and processed with faster capturing and the expected results are archived with experimental observations and comparative study. On a whole, the system is efficient in understanding and analyzing the visibility intensity and obstacle detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A hybrid approach for pansharpening using Hilbert vibration decomposition Comparative analysis of multi carrier PWM eleven level inverter with two modulation waves PWM based multilevel feed induction drive using single phase to three phase converter TCR designing to minimize the voltage fluctuation within 5% of three phase arc furnace A TLBO algorithm based optimal load scheduling of generators for power system network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1