变黏度涡量输运方程的边界域积分法

J. Ravnik, J. Tibaut
{"title":"变黏度涡量输运方程的边界域积分法","authors":"J. Ravnik, J. Tibaut","doi":"10.2495/CMEM-V6-N6-1087-1096","DOIUrl":null,"url":null,"abstract":"In this paper, we derive a boundary-domain integral formulation for the vorticity transport equation under the assumption that the viscosity of the fluid, through which the vorticity is transported by diffusion and convection, is spatially changing. The vorticity transport equation is a second order partial differential equation of a diffusion-convection type. The final boundary-domain integral representation of the vorticity transport equation is discretized using a domain decomposition approach, where a system of linear equations is set-up for each sub-domain, while subdomains are joint by compatibility conditions. The validity of the method is checked using several analytical examples. Convergence properties are studied yielding that the proposed discretization technique is second order accurate for constant and variable viscosity cases.","PeriodicalId":22520,"journal":{"name":"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS","volume":"81 1","pages":"1087-1096"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Boundary-domain integral method for vorticity transport equation with variable viscosity\",\"authors\":\"J. Ravnik, J. Tibaut\",\"doi\":\"10.2495/CMEM-V6-N6-1087-1096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive a boundary-domain integral formulation for the vorticity transport equation under the assumption that the viscosity of the fluid, through which the vorticity is transported by diffusion and convection, is spatially changing. The vorticity transport equation is a second order partial differential equation of a diffusion-convection type. The final boundary-domain integral representation of the vorticity transport equation is discretized using a domain decomposition approach, where a system of linear equations is set-up for each sub-domain, while subdomains are joint by compatibility conditions. The validity of the method is checked using several analytical examples. Convergence properties are studied yielding that the proposed discretization technique is second order accurate for constant and variable viscosity cases.\",\"PeriodicalId\":22520,\"journal\":{\"name\":\"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS\",\"volume\":\"81 1\",\"pages\":\"1087-1096\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/CMEM-V6-N6-1087-1096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/CMEM-V6-N6-1087-1096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文推导了涡度输运方程的边界域积分公式,该方程假定涡度通过扩散和对流输运的流体粘度是空间变化的。涡度输运方程是扩散-对流型二阶偏微分方程。涡度输运方程的最终边界-域积分表示采用域分解方法离散化,其中每个子域建立一个线性方程组,而子域通过相容性条件联合。通过几个算例验证了该方法的有效性。研究了该离散化方法的收敛性,表明该方法对常黏和变黏情况下均具有二阶精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boundary-domain integral method for vorticity transport equation with variable viscosity
In this paper, we derive a boundary-domain integral formulation for the vorticity transport equation under the assumption that the viscosity of the fluid, through which the vorticity is transported by diffusion and convection, is spatially changing. The vorticity transport equation is a second order partial differential equation of a diffusion-convection type. The final boundary-domain integral representation of the vorticity transport equation is discretized using a domain decomposition approach, where a system of linear equations is set-up for each sub-domain, while subdomains are joint by compatibility conditions. The validity of the method is checked using several analytical examples. Convergence properties are studied yielding that the proposed discretization technique is second order accurate for constant and variable viscosity cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating the Microhardness Behavior of Al6061/TiC Surface Composites Produced by Friction Stir Processing Cyanobacterial Biomonitoring in Lake Avernus During the COVID-19 Pandemic: Integrating Remote Sensing and Field Data for Pollution Source Detection Impact of Iron Oxide Nanoparticles Additives in Water Hyacinth/Diesel Biofuel Mixture on CI Engine Performance and Emissions Comparison of Current Complex Variable Boundary Element Method (CVBEM) Capabilities in Basis Functions, Node Positioning Algorithms (NPAs), and Coefficient Determination Methods Theoretical Entropy Generation Analysis for Forced Convection Flow Around a Horizontal Cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1