{"title":"城市无线网络中的自相似性:超分形","authors":"P. Jacquet, D. Popescu","doi":"10.23919/WIOPT.2017.7959939","DOIUrl":null,"url":null,"abstract":"We introduce a model of Poisson patterns of fixed and mobile nodes on lines designed for urban wireless networks. The pattern obeys to \"Hyperfractal\" rules of dimension larger than 2. The hyperfractal pattern is best suitable for capturing the traffic over the streets and highways in a city. We show that the network capacity under ad hoc routing algorithms scales much better than with the classic uniform Poisson shot model. The scaling effect depends on the hyperfractal dimensions. We show this results in two different routing models: nearest neighbor routing with no collision, minimum delay routing model assuming slotted Aloha and signal to interference ratio (SIR) capture condition, power-path loss and Rayleigh fading. The novelty of the model is that, in addition to capturing the irregularity and variability of the node configuration, it exploits self-similarity, a characteristic of urban wireless networks.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Self-similarity in urban wireless networks: Hyperfractals\",\"authors\":\"P. Jacquet, D. Popescu\",\"doi\":\"10.23919/WIOPT.2017.7959939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a model of Poisson patterns of fixed and mobile nodes on lines designed for urban wireless networks. The pattern obeys to \\\"Hyperfractal\\\" rules of dimension larger than 2. The hyperfractal pattern is best suitable for capturing the traffic over the streets and highways in a city. We show that the network capacity under ad hoc routing algorithms scales much better than with the classic uniform Poisson shot model. The scaling effect depends on the hyperfractal dimensions. We show this results in two different routing models: nearest neighbor routing with no collision, minimum delay routing model assuming slotted Aloha and signal to interference ratio (SIR) capture condition, power-path loss and Rayleigh fading. The novelty of the model is that, in addition to capturing the irregularity and variability of the node configuration, it exploits self-similarity, a characteristic of urban wireless networks.\",\"PeriodicalId\":6630,\"journal\":{\"name\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WIOPT.2017.7959939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-similarity in urban wireless networks: Hyperfractals
We introduce a model of Poisson patterns of fixed and mobile nodes on lines designed for urban wireless networks. The pattern obeys to "Hyperfractal" rules of dimension larger than 2. The hyperfractal pattern is best suitable for capturing the traffic over the streets and highways in a city. We show that the network capacity under ad hoc routing algorithms scales much better than with the classic uniform Poisson shot model. The scaling effect depends on the hyperfractal dimensions. We show this results in two different routing models: nearest neighbor routing with no collision, minimum delay routing model assuming slotted Aloha and signal to interference ratio (SIR) capture condition, power-path loss and Rayleigh fading. The novelty of the model is that, in addition to capturing the irregularity and variability of the node configuration, it exploits self-similarity, a characteristic of urban wireless networks.