混合动力汽车再生制动系统的数据驱动故障诊断

C. Sankavaram, B. Pattipati, K. Pattipati, Yilu Zhang, Mark N Howell, M. Salman
{"title":"混合动力汽车再生制动系统的数据驱动故障诊断","authors":"C. Sankavaram, B. Pattipati, K. Pattipati, Yilu Zhang, Mark N Howell, M. Salman","doi":"10.1109/AERO.2012.6187368","DOIUrl":null,"url":null,"abstract":"Regenerative braking is one of the most promising and environmentally friendly technologies used in electric and hybrid electric vehicles to improve energy efficiency and vehicle stability. In this paper, we discuss a systematic data-driven process for detecting and diagnosing faults in the regenerative braking system of hybrid electric vehicles. The process involves data reduction techniques, exemplified by multi-way partial least squares, multi-way principal component analysis, for implementation in memory-constrained electronic control units and well-known fault classification techniques based on reduced data, such as support vector machines, k-nearest neighbor, partial least squares, principal component analysis and probabilistic neural network, to isolate faults in the braking system. The results demonstrate that highly accurate fault diagnosis is possible with the pattern recognition-based techniques. The process can be employed for fault analysis in a wide variety of systems, ranging from automobiles to buildings to aerospace systems.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":"105 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Data-driven fault diagnosis in a hybrid electric vehicle regenerative braking system\",\"authors\":\"C. Sankavaram, B. Pattipati, K. Pattipati, Yilu Zhang, Mark N Howell, M. Salman\",\"doi\":\"10.1109/AERO.2012.6187368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regenerative braking is one of the most promising and environmentally friendly technologies used in electric and hybrid electric vehicles to improve energy efficiency and vehicle stability. In this paper, we discuss a systematic data-driven process for detecting and diagnosing faults in the regenerative braking system of hybrid electric vehicles. The process involves data reduction techniques, exemplified by multi-way partial least squares, multi-way principal component analysis, for implementation in memory-constrained electronic control units and well-known fault classification techniques based on reduced data, such as support vector machines, k-nearest neighbor, partial least squares, principal component analysis and probabilistic neural network, to isolate faults in the braking system. The results demonstrate that highly accurate fault diagnosis is possible with the pattern recognition-based techniques. The process can be employed for fault analysis in a wide variety of systems, ranging from automobiles to buildings to aerospace systems.\",\"PeriodicalId\":6421,\"journal\":{\"name\":\"2012 IEEE Aerospace Conference\",\"volume\":\"105 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2012.6187368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

再生制动是一种最有前途和最环保的技术,用于电动和混合动力汽车,以提高能源效率和车辆的稳定性。本文讨论了一种基于数据驱动的混合动力汽车再生制动系统故障检测与诊断方法。该过程涉及数据约简技术,例如多路偏最小二乘、多路主成分分析,用于内存受限的电子控制单元,以及基于约简数据的知名故障分类技术,如支持向量机、k近邻、偏最小二乘、主成分分析和概率神经网络,以隔离制动系统中的故障。结果表明,基于模式识别的故障诊断方法可以实现高精度的故障诊断。该过程可用于各种系统的故障分析,从汽车到建筑物再到航空航天系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven fault diagnosis in a hybrid electric vehicle regenerative braking system
Regenerative braking is one of the most promising and environmentally friendly technologies used in electric and hybrid electric vehicles to improve energy efficiency and vehicle stability. In this paper, we discuss a systematic data-driven process for detecting and diagnosing faults in the regenerative braking system of hybrid electric vehicles. The process involves data reduction techniques, exemplified by multi-way partial least squares, multi-way principal component analysis, for implementation in memory-constrained electronic control units and well-known fault classification techniques based on reduced data, such as support vector machines, k-nearest neighbor, partial least squares, principal component analysis and probabilistic neural network, to isolate faults in the braking system. The results demonstrate that highly accurate fault diagnosis is possible with the pattern recognition-based techniques. The process can be employed for fault analysis in a wide variety of systems, ranging from automobiles to buildings to aerospace systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-cost telepresence at technical conferences Design of a Stellar Gyroscope for visual attitude propagation for small satellites A cooperative search algorithm for highly parallel implementation of RANSAC for model estimation on Tilera MIMD architecture Open source software framework for applications in aeronautics and space Robonaut 2 — Initial activities on-board the ISS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1