{"title":"FY-3C机载微波温湿度测深仪的评估与验证","authors":"Jieying He, Shengwei Zhang, Zhenzhan Wang, Na Li","doi":"10.1109/IGARSS.2017.8127394","DOIUrl":null,"url":null,"abstract":"The paper introduces the design and development of MWHTS system and quantitatively evaluates the stability of its post-launch performance (3 years and 3 months). The on-orbit assessment of MWHTS demonstrates that the MWHTS onboard FY-3C has been improved compared to it on FY-3A and FY-3B. Furthermore, using the observing data from MTHTS shows that the instrument plays an important role in monitor extreme climate, especially for typhoon between June to Sept in 2016, including the procedure of generating, evolution, strengthen and die out, and also including the heavy rainfall caused by typhoon, which is compared against ground-based observations (gauge) and products blended by sensors onboard TRMM and GPM.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"2010 1","pages":"2089-2092"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessment and validation of microwave humidity and temperature sounder onboard FY-3C\",\"authors\":\"Jieying He, Shengwei Zhang, Zhenzhan Wang, Na Li\",\"doi\":\"10.1109/IGARSS.2017.8127394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces the design and development of MWHTS system and quantitatively evaluates the stability of its post-launch performance (3 years and 3 months). The on-orbit assessment of MWHTS demonstrates that the MWHTS onboard FY-3C has been improved compared to it on FY-3A and FY-3B. Furthermore, using the observing data from MTHTS shows that the instrument plays an important role in monitor extreme climate, especially for typhoon between June to Sept in 2016, including the procedure of generating, evolution, strengthen and die out, and also including the heavy rainfall caused by typhoon, which is compared against ground-based observations (gauge) and products blended by sensors onboard TRMM and GPM.\",\"PeriodicalId\":6466,\"journal\":{\"name\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"2010 1\",\"pages\":\"2089-2092\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2017.8127394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2017.8127394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessment and validation of microwave humidity and temperature sounder onboard FY-3C
The paper introduces the design and development of MWHTS system and quantitatively evaluates the stability of its post-launch performance (3 years and 3 months). The on-orbit assessment of MWHTS demonstrates that the MWHTS onboard FY-3C has been improved compared to it on FY-3A and FY-3B. Furthermore, using the observing data from MTHTS shows that the instrument plays an important role in monitor extreme climate, especially for typhoon between June to Sept in 2016, including the procedure of generating, evolution, strengthen and die out, and also including the heavy rainfall caused by typhoon, which is compared against ground-based observations (gauge) and products blended by sensors onboard TRMM and GPM.