Najat Almasarwah, Esraa S. Abdelall, G. Suer, Gokhan Egilmez, Manjeet Singh, S. Ramadan
{"title":"考虑储存时间和相对湿度的托盘装载优化","authors":"Najat Almasarwah, Esraa S. Abdelall, G. Suer, Gokhan Egilmez, Manjeet Singh, S. Ramadan","doi":"10.3926/jiem.4613","DOIUrl":null,"url":null,"abstract":"Purpose: This paper studies a 3-dimensional pallet loading problem considering interlock stacking pattern, box dimensions, humidity, and storage time, where overlapping and overhanging are not allowed. Despite the importance of this problem in the literature, our work provides the first method that considers the environmental conditions such as 1) storage time and 2) humidity, and their tremendous impacts on the strength of the boxes, as has been observed widely in the DHL supply chain.Design/methodology/approach: This paper proposes a two-phase heuristic algorithm to solve a 3-dimensional pallet loading problem under real conditions (relative humidity, and storage time) considering interlock stacking patterns, where overlapping and overhanging are not allowed. In phase 1, the horizontal layer configuration is determined by block techniques. Three types of horizontal layers are created based on box dimensions perpendicular to the base. In phase 2, a novel mathematical model is propounded to improve the pallet volume utilization, and stability considering the pallet's maximum allowable height and weight, and the dynamic compression strength of boxes. The dynamic compression strength of boxes is calculated by the modified McKee formula. Two performance measures, pallet volume utilization and stability (load height), are utilized to evaluate the performance of the proposed heuristic algorithm in real-world instances (DHL Supply Chain). Findings: The results illustrated that the dynamic compression strength of boxes decreases as the relative humidity and storage time increase. The load height changes dynamically along with box dimensions, box alignment, direction, relative humidity, and storage time. Increasing relative humidity and storage time and applying an interlock stacking pattern reduce the pallet utilization, however, enhance the pallet stability. Finally, the proposed heuristic algorithm's efficacy increases as the identical boxes dimensions' heterogeneity increases.Originality/value: It is believed in the supply chain where these characteristics are observed, the implementation of the heuristic algorithm will help them improve the pallet volume utilization and stability.","PeriodicalId":38526,"journal":{"name":"International Journal of Industrial Engineering and Management","volume":"126 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pallet loading optimization considering storage time and relative humidity\",\"authors\":\"Najat Almasarwah, Esraa S. Abdelall, G. Suer, Gokhan Egilmez, Manjeet Singh, S. Ramadan\",\"doi\":\"10.3926/jiem.4613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: This paper studies a 3-dimensional pallet loading problem considering interlock stacking pattern, box dimensions, humidity, and storage time, where overlapping and overhanging are not allowed. Despite the importance of this problem in the literature, our work provides the first method that considers the environmental conditions such as 1) storage time and 2) humidity, and their tremendous impacts on the strength of the boxes, as has been observed widely in the DHL supply chain.Design/methodology/approach: This paper proposes a two-phase heuristic algorithm to solve a 3-dimensional pallet loading problem under real conditions (relative humidity, and storage time) considering interlock stacking patterns, where overlapping and overhanging are not allowed. In phase 1, the horizontal layer configuration is determined by block techniques. Three types of horizontal layers are created based on box dimensions perpendicular to the base. In phase 2, a novel mathematical model is propounded to improve the pallet volume utilization, and stability considering the pallet's maximum allowable height and weight, and the dynamic compression strength of boxes. The dynamic compression strength of boxes is calculated by the modified McKee formula. Two performance measures, pallet volume utilization and stability (load height), are utilized to evaluate the performance of the proposed heuristic algorithm in real-world instances (DHL Supply Chain). Findings: The results illustrated that the dynamic compression strength of boxes decreases as the relative humidity and storage time increase. The load height changes dynamically along with box dimensions, box alignment, direction, relative humidity, and storage time. Increasing relative humidity and storage time and applying an interlock stacking pattern reduce the pallet utilization, however, enhance the pallet stability. Finally, the proposed heuristic algorithm's efficacy increases as the identical boxes dimensions' heterogeneity increases.Originality/value: It is believed in the supply chain where these characteristics are observed, the implementation of the heuristic algorithm will help them improve the pallet volume utilization and stability.\",\"PeriodicalId\":38526,\"journal\":{\"name\":\"International Journal of Industrial Engineering and Management\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Industrial Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3926/jiem.4613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3926/jiem.4613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Pallet loading optimization considering storage time and relative humidity
Purpose: This paper studies a 3-dimensional pallet loading problem considering interlock stacking pattern, box dimensions, humidity, and storage time, where overlapping and overhanging are not allowed. Despite the importance of this problem in the literature, our work provides the first method that considers the environmental conditions such as 1) storage time and 2) humidity, and their tremendous impacts on the strength of the boxes, as has been observed widely in the DHL supply chain.Design/methodology/approach: This paper proposes a two-phase heuristic algorithm to solve a 3-dimensional pallet loading problem under real conditions (relative humidity, and storage time) considering interlock stacking patterns, where overlapping and overhanging are not allowed. In phase 1, the horizontal layer configuration is determined by block techniques. Three types of horizontal layers are created based on box dimensions perpendicular to the base. In phase 2, a novel mathematical model is propounded to improve the pallet volume utilization, and stability considering the pallet's maximum allowable height and weight, and the dynamic compression strength of boxes. The dynamic compression strength of boxes is calculated by the modified McKee formula. Two performance measures, pallet volume utilization and stability (load height), are utilized to evaluate the performance of the proposed heuristic algorithm in real-world instances (DHL Supply Chain). Findings: The results illustrated that the dynamic compression strength of boxes decreases as the relative humidity and storage time increase. The load height changes dynamically along with box dimensions, box alignment, direction, relative humidity, and storage time. Increasing relative humidity and storage time and applying an interlock stacking pattern reduce the pallet utilization, however, enhance the pallet stability. Finally, the proposed heuristic algorithm's efficacy increases as the identical boxes dimensions' heterogeneity increases.Originality/value: It is believed in the supply chain where these characteristics are observed, the implementation of the heuristic algorithm will help them improve the pallet volume utilization and stability.
期刊介绍:
International Journal of Industrial Engineering and Management (IJIEM) is an interdisciplinary international academic journal published quarterly. IJIEM serves researchers in the industrial engineering, manufacturing engineering and management fields. The major aims are: To collect and disseminate information on new and advanced developments in the field of industrial engineering and management; To encourage further progress in engineering and management methodology and applications; To cover the range of engineering and management development and usage in their use of managerial policies and strategies. Thus, IJIEM invites the submission of original, high quality, theoretical and application-oriented research; general surveys and critical reviews; educational or training articles including case studies, in the field of industrial engineering and management. The journal covers all aspects of industrial engineering and management, particularly: -Smart Manufacturing & Industry 4.0, -Production Systems, -Service Engineering, -Automation, Robotics and Mechatronics, -Information and Communication Systems, -ICT for Collaborative Manufacturing, -Quality, Maintenance and Logistics, -Safety and Reliability, -Organization and Human Resources, -Engineering Management, -Entrepreneurship and Innovation, -Project Management, -Marketing and Commerce, -Investment, Finance and Accounting, -Insurance Engineering and Management, -Media Engineering and Management, -Education and Practices in Industrial Engineering and Management.