激光与电子束粉末床熔合形成Ti-6Al-4V熔池的热流体特性比较

IF 1.5 4区 材料科学 Q3 ENGINEERING, MECHANICAL Journal of Engineering Materials and Technology-transactions of The Asme Pub Date : 2021-04-01 DOI:10.1115/1.4048371
M. S. Rahman, P. Schilling, P. Herrington, U. Chakravarty
{"title":"激光与电子束粉末床熔合形成Ti-6Al-4V熔池的热流体特性比较","authors":"M. S. Rahman, P. Schilling, P. Herrington, U. Chakravarty","doi":"10.1115/1.4048371","DOIUrl":null,"url":null,"abstract":"\n Powder-bed fusion (PBF) process is a subdivision of additive manufacturing (AM) technology where a heat source at a controlled speed selectively fuses regions of a powder-bed material to form three-dimensional (3D) parts in a layer-by-layer fashion. Two of the most commercialized and powerful PBF methods for fabricating full-density metallic parts are the laser PBF (L-PBF) and electron beam PBF (E-PBF) processes. In this study, a multiphysics-based 3D numerical model is developed to compare the thermo-fluid properties of Ti-6Al-4V melt pools formed by the L-PBF and E-PBF processes. The temperature-dependent properties of Ti-6Al-4V alloy and the parameters for the laser and electron beams are incorporated in the model as the user-defined functions (UDFs). The melt-pool geometry and its thermo-fluid behavior are investigated using the finite volume (FV) method, and results for the variations of temperature, thermo-physical properties, velocity, geometry of the melt pool, and cooling rate in the two processes are compared under similar irradiation conditions. For an irradiance level of 26 J/mm3 and a beam interaction time of 1.212 ms, simulation results show that the L-PBF process gives a faster cooling rate (1. 5 K/μs) than that in the E-PBF process (0.74 K/μs). The magnitude of liquid velocity in the melt pool is also higher in L-PBF than that in E-PBF. The numerical model is validated by comparing the simulation results for the melt-pool geometry with the PBF experimental results and comparing the numerical melt-front position with the analytical solution for the classical Stephan problem of melting of a phase-change material (PCM).","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Comparison of the Thermo-Fluid Properties of Ti-6Al-4V Melt Pools Formed by Laser and Electron-Beam Powder-Bed Fusion Processes\",\"authors\":\"M. S. Rahman, P. Schilling, P. Herrington, U. Chakravarty\",\"doi\":\"10.1115/1.4048371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Powder-bed fusion (PBF) process is a subdivision of additive manufacturing (AM) technology where a heat source at a controlled speed selectively fuses regions of a powder-bed material to form three-dimensional (3D) parts in a layer-by-layer fashion. Two of the most commercialized and powerful PBF methods for fabricating full-density metallic parts are the laser PBF (L-PBF) and electron beam PBF (E-PBF) processes. In this study, a multiphysics-based 3D numerical model is developed to compare the thermo-fluid properties of Ti-6Al-4V melt pools formed by the L-PBF and E-PBF processes. The temperature-dependent properties of Ti-6Al-4V alloy and the parameters for the laser and electron beams are incorporated in the model as the user-defined functions (UDFs). The melt-pool geometry and its thermo-fluid behavior are investigated using the finite volume (FV) method, and results for the variations of temperature, thermo-physical properties, velocity, geometry of the melt pool, and cooling rate in the two processes are compared under similar irradiation conditions. For an irradiance level of 26 J/mm3 and a beam interaction time of 1.212 ms, simulation results show that the L-PBF process gives a faster cooling rate (1. 5 K/μs) than that in the E-PBF process (0.74 K/μs). The magnitude of liquid velocity in the melt pool is also higher in L-PBF than that in E-PBF. The numerical model is validated by comparing the simulation results for the melt-pool geometry with the PBF experimental results and comparing the numerical melt-front position with the analytical solution for the classical Stephan problem of melting of a phase-change material (PCM).\",\"PeriodicalId\":15700,\"journal\":{\"name\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4048371\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4048371","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 11

摘要

粉末床熔融(PBF)工艺是增材制造(AM)技术的一个分支,在该技术中,以受控速度的热源有选择地熔融粉末床材料的区域,以逐层方式形成三维(3D)部件。两种最商业化和最强大的制造全密度金属零件的PBF方法是激光PBF (L-PBF)和电子束PBF (E-PBF)工艺。在这项研究中,建立了一个基于多物理场的三维数值模型来比较L-PBF和E-PBF过程形成的Ti-6Al-4V熔池的热流体性质。Ti-6Al-4V合金的温度依赖特性以及激光和电子束参数作为用户定义函数(udf)纳入模型。采用有限体积(FV)方法研究了熔池的几何形状及其热流体行为,并比较了在相似辐照条件下两种工艺的温度、热物理性质、速度、熔池几何形状和冷却速率的变化结果。当辐照强度为26 J/mm3,光束相互作用时间为1.212 ms时,模拟结果表明,L-PBF过程具有更快的冷却速率(1。5 K/μs),比E-PBF工艺(0.74 K/μs)要好。L-PBF熔池中液体速度的大小也比E-PBF高。通过对熔融池几何形状的模拟结果与PBF实验结果的比较,以及对相变材料(PCM)熔化的经典Stephan问题的数值解与熔体前沿位置的比较,对数值模型进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparison of the Thermo-Fluid Properties of Ti-6Al-4V Melt Pools Formed by Laser and Electron-Beam Powder-Bed Fusion Processes
Powder-bed fusion (PBF) process is a subdivision of additive manufacturing (AM) technology where a heat source at a controlled speed selectively fuses regions of a powder-bed material to form three-dimensional (3D) parts in a layer-by-layer fashion. Two of the most commercialized and powerful PBF methods for fabricating full-density metallic parts are the laser PBF (L-PBF) and electron beam PBF (E-PBF) processes. In this study, a multiphysics-based 3D numerical model is developed to compare the thermo-fluid properties of Ti-6Al-4V melt pools formed by the L-PBF and E-PBF processes. The temperature-dependent properties of Ti-6Al-4V alloy and the parameters for the laser and electron beams are incorporated in the model as the user-defined functions (UDFs). The melt-pool geometry and its thermo-fluid behavior are investigated using the finite volume (FV) method, and results for the variations of temperature, thermo-physical properties, velocity, geometry of the melt pool, and cooling rate in the two processes are compared under similar irradiation conditions. For an irradiance level of 26 J/mm3 and a beam interaction time of 1.212 ms, simulation results show that the L-PBF process gives a faster cooling rate (1. 5 K/μs) than that in the E-PBF process (0.74 K/μs). The magnitude of liquid velocity in the melt pool is also higher in L-PBF than that in E-PBF. The numerical model is validated by comparing the simulation results for the melt-pool geometry with the PBF experimental results and comparing the numerical melt-front position with the analytical solution for the classical Stephan problem of melting of a phase-change material (PCM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
30
审稿时长
4.5 months
期刊介绍: Multiscale characterization, modeling, and experiments; High-temperature creep, fatigue, and fracture; Elastic-plastic behavior; Environmental effects on material response, constitutive relations, materials processing, and microstructure mechanical property relationships
期刊最新文献
Effect of Build Geometry and Porosity in Additively Manufactured CuCrZr Influence of Multiple Modifications on the Fatigue Behavior of Bitumen and Asphalt Mixtures High Temperature Tensile and Compressive Behaviors of Nanostructured Polycrystalline AlCoCrFeNi High Entropy Alloy: A Molecular Dynamics Study Simulation of Pitting Corrosion Under Stress Based on Cellular Automata and Finite Element Method Corrosion Behavior of 20G Steel in Saline (Na2SO4) Circumstances at High Temperature/Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1