加纳聚光太阳能发电技术的技术经济评价

Richmond Kwesi Amoah, S. Nunoo, J. C. Attachie
{"title":"加纳聚光太阳能发电技术的技术经济评价","authors":"Richmond Kwesi Amoah, S. Nunoo, J. C. Attachie","doi":"10.1155/2022/8955896","DOIUrl":null,"url":null,"abstract":"This work estimates the annual energy that could be generated from a concentrated solar power (CSP) plant. The optimal location used for this analysis was selected based on a set of multicriteria decision-making (MCDM) methods employed in an earlier research. The paper also determines the financial viability of implementing a CSP plant within the selected location. A 100 MW CSP plant for the said location was modelled and simulated using the System Advisor Model (SAM) software with data from the online database of the National Renewable Energy Lab (NREL) available from the SAM software. Using a solar multiple of 2.0 with a TES of 6 hours, the plant generated an estimated annual energy of 306.850 GWh with a capacity factor of 35.10% and gross-to-net conversion of 89.10%. The months with the highest generation were from November to March while July to September had the least generation. Generation begins from 8 am, rising to a peak around 12 pm to 4 pm and gradually declines into the night. Results from the financial analysis produced a net present value (NPV) of USD 156,287,433.72 after the plant life of 25 years, indicating profitability of the project. Results from the sensitivity analysis showed that the project NPV became negative only when the base case capital cost, electricity price, and revenue were, respectively, increased by 15%, reduced by 10%, and reduced by 13%.","PeriodicalId":30572,"journal":{"name":"Journal of Energy","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technoeconomic Evaluation of Electricity Generation from Concentrated Solar Power Technologies in Ghana\",\"authors\":\"Richmond Kwesi Amoah, S. Nunoo, J. C. Attachie\",\"doi\":\"10.1155/2022/8955896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work estimates the annual energy that could be generated from a concentrated solar power (CSP) plant. The optimal location used for this analysis was selected based on a set of multicriteria decision-making (MCDM) methods employed in an earlier research. The paper also determines the financial viability of implementing a CSP plant within the selected location. A 100 MW CSP plant for the said location was modelled and simulated using the System Advisor Model (SAM) software with data from the online database of the National Renewable Energy Lab (NREL) available from the SAM software. Using a solar multiple of 2.0 with a TES of 6 hours, the plant generated an estimated annual energy of 306.850 GWh with a capacity factor of 35.10% and gross-to-net conversion of 89.10%. The months with the highest generation were from November to March while July to September had the least generation. Generation begins from 8 am, rising to a peak around 12 pm to 4 pm and gradually declines into the night. Results from the financial analysis produced a net present value (NPV) of USD 156,287,433.72 after the plant life of 25 years, indicating profitability of the project. Results from the sensitivity analysis showed that the project NPV became negative only when the base case capital cost, electricity price, and revenue were, respectively, increased by 15%, reduced by 10%, and reduced by 13%.\",\"PeriodicalId\":30572,\"journal\":{\"name\":\"Journal of Energy\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8955896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/8955896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作估计了一个聚光太阳能(CSP)发电厂每年可以产生的能量。本分析使用的最佳位置是基于一套多标准决策(MCDM)方法在早期的研究中采用的选择。本文还确定了在选定地点实施CSP工厂的财务可行性。使用系统顾问模型(SAM)软件对上述地点的100兆瓦光热发电厂进行了建模和模拟,数据来自SAM软件提供的国家可再生能源实验室(NREL)的在线数据库。采用2.0的太阳能乘数,TES为6小时,该电厂的年发电量估计为306.850吉瓦时,容量系数为35.10%,总净转化率为89.10%。11 - 3月为代数最多的月份,7 - 9月代数最少。发电从早上8点开始,在中午12点到下午4点左右达到高峰,然后逐渐下降到晚上。财务分析结果显示,该项目在25年后的净现值(NPV)为156,287,433.72美元,表明该项目具有盈利能力。敏感性分析结果表明,只有当基本情况下资本成本、电价和收入分别增加15%、减少10%和减少13%时,项目净现值才会变为负值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Technoeconomic Evaluation of Electricity Generation from Concentrated Solar Power Technologies in Ghana
This work estimates the annual energy that could be generated from a concentrated solar power (CSP) plant. The optimal location used for this analysis was selected based on a set of multicriteria decision-making (MCDM) methods employed in an earlier research. The paper also determines the financial viability of implementing a CSP plant within the selected location. A 100 MW CSP plant for the said location was modelled and simulated using the System Advisor Model (SAM) software with data from the online database of the National Renewable Energy Lab (NREL) available from the SAM software. Using a solar multiple of 2.0 with a TES of 6 hours, the plant generated an estimated annual energy of 306.850 GWh with a capacity factor of 35.10% and gross-to-net conversion of 89.10%. The months with the highest generation were from November to March while July to September had the least generation. Generation begins from 8 am, rising to a peak around 12 pm to 4 pm and gradually declines into the night. Results from the financial analysis produced a net present value (NPV) of USD 156,287,433.72 after the plant life of 25 years, indicating profitability of the project. Results from the sensitivity analysis showed that the project NPV became negative only when the base case capital cost, electricity price, and revenue were, respectively, increased by 15%, reduced by 10%, and reduced by 13%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
28 weeks
期刊最新文献
Current Status and Future Prospects of Small-Scale Household Biodigesters in Sub-Saharan Africa Strategic Sizing and Placement of Distributed Generation in Radial Distributed Networks Using Multiobjective PSO Catalytic Pyrolysis of Plastic Waste to Liquid Fuel Using Local Clay Catalyst Optimization of Syngas Quality for Fischer-Tropsch Synthesis Review and Design Overview of Plastic Waste-to-Pyrolysis Oil Conversion with Implications on the Energy Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1