{"title":"Ag-MnFe2O4杂化纳米颗粒的制备及其抗菌性能研究","authors":"Thi Thanh Tuyen Le, V. Giap","doi":"10.5897/ijps2022.5002","DOIUrl":null,"url":null,"abstract":"The hybrid nanoparticles Ag-MnFe 2 O 4 was successfully fabricated by the seed-growth method and thermal decomposition method. The shape and size of these nanoparticles were evaluated by Transmission electron microscopes (TEM) images showing that these nanoparticles are quite uniform and have a diameter of about 20 nm. The UV-Vis spectrum of hybrid nanoparticles Ag-MnFe 2 O 4 shows that in the wavelength region from 300 to 800 nm, the ferrite manganese nanoparticle does not appear to have an absorption peak, while the spectrum of the silver nanoparticle shows a characteristic surface plasmon resonance (LSPR) peak with peaks between 400 and 420 nm. Research results show that the hybrid nanoparticles Ag-MnFe 2 O 4 coated with PMAO (MFA10-PMAO) has the ability to inhibit both Escherichia coli bacteria-intestinal bacilli and Staphylococcus aureus bacteria. In which, the antibacterial ability with E. coli is stronger than that of S. aureus, the antibacterial zone diameter in both cases are 21.5 and 16 mm, respectively. In addition, MFA10-PMAO nanoparticles also showed easy recovery after treatment, which is favorable for reuse.","PeriodicalId":14294,"journal":{"name":"International Journal of Physical Sciences","volume":"234 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research for fabrication and antibacterial properties of hybrid nanoparticles Ag-MnFe2O4\",\"authors\":\"Thi Thanh Tuyen Le, V. Giap\",\"doi\":\"10.5897/ijps2022.5002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hybrid nanoparticles Ag-MnFe 2 O 4 was successfully fabricated by the seed-growth method and thermal decomposition method. The shape and size of these nanoparticles were evaluated by Transmission electron microscopes (TEM) images showing that these nanoparticles are quite uniform and have a diameter of about 20 nm. The UV-Vis spectrum of hybrid nanoparticles Ag-MnFe 2 O 4 shows that in the wavelength region from 300 to 800 nm, the ferrite manganese nanoparticle does not appear to have an absorption peak, while the spectrum of the silver nanoparticle shows a characteristic surface plasmon resonance (LSPR) peak with peaks between 400 and 420 nm. Research results show that the hybrid nanoparticles Ag-MnFe 2 O 4 coated with PMAO (MFA10-PMAO) has the ability to inhibit both Escherichia coli bacteria-intestinal bacilli and Staphylococcus aureus bacteria. In which, the antibacterial ability with E. coli is stronger than that of S. aureus, the antibacterial zone diameter in both cases are 21.5 and 16 mm, respectively. In addition, MFA10-PMAO nanoparticles also showed easy recovery after treatment, which is favorable for reuse.\",\"PeriodicalId\":14294,\"journal\":{\"name\":\"International Journal of Physical Sciences\",\"volume\":\"234 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5897/ijps2022.5002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/ijps2022.5002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research for fabrication and antibacterial properties of hybrid nanoparticles Ag-MnFe2O4
The hybrid nanoparticles Ag-MnFe 2 O 4 was successfully fabricated by the seed-growth method and thermal decomposition method. The shape and size of these nanoparticles were evaluated by Transmission electron microscopes (TEM) images showing that these nanoparticles are quite uniform and have a diameter of about 20 nm. The UV-Vis spectrum of hybrid nanoparticles Ag-MnFe 2 O 4 shows that in the wavelength region from 300 to 800 nm, the ferrite manganese nanoparticle does not appear to have an absorption peak, while the spectrum of the silver nanoparticle shows a characteristic surface plasmon resonance (LSPR) peak with peaks between 400 and 420 nm. Research results show that the hybrid nanoparticles Ag-MnFe 2 O 4 coated with PMAO (MFA10-PMAO) has the ability to inhibit both Escherichia coli bacteria-intestinal bacilli and Staphylococcus aureus bacteria. In which, the antibacterial ability with E. coli is stronger than that of S. aureus, the antibacterial zone diameter in both cases are 21.5 and 16 mm, respectively. In addition, MFA10-PMAO nanoparticles also showed easy recovery after treatment, which is favorable for reuse.