碎石压实桩复合地基性能的有限元分析

IF 0.4 Q4 ENGINEERING, GEOLOGICAL Journal of the Korean Geosynthetic Society Pub Date : 2018-01-01 DOI:10.12814/JKGSS.2018.17.3.019
Kim Gyeong Eop, Kyungho Park, Kim ho yeoun, Daehyeon Kim
{"title":"碎石压实桩复合地基性能的有限元分析","authors":"Kim Gyeong Eop, Kyungho Park, Kim ho yeoun, Daehyeon Kim","doi":"10.12814/JKGSS.2018.17.3.019","DOIUrl":null,"url":null,"abstract":"Gravel Compaction Pile (GCP) method is currently being designed and constructed by empirical method because quantitative design method has not been developed, leading to various types of and frequent destruction such as expansion failure and shear failure and difficulties in establishing clear cause and developing measure to prevent destruction. In addition, despite the difference with domestic construction equipment and material characteristics, the methods applied to the overseas ground is applied to the domestic as it is, leading to remarkable difference between applied values and measured values in variables such as bearing capacity and the settlement amount. The purpose of this study was, therefore, to propose a reasonable and safe design method of GCP method by analyzing the settlement and stress behavior characteristics according to ground strength change under GCP method applied to domestic clay ground. For the purpose, settlement amount of composite ground, stress concentration ratio, and maximum horizontal displacement and expected location of GCP were analyzed using ABAQUS. The results of analysis showed that the settlement and Settlement reduction rate of composite ground decreased by more than 60% under replacement ratio of 30% or more, that the maximum horizontal displacement of GCP occurred at the depth 2.6 times pile diameter, and that the difference in horizontal displacement is slight under replacement ratio of 30%.","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":"17 1","pages":"19-32"},"PeriodicalIF":0.4000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Analysis for Investigating the Behavior of Gravel Compaction Pile Composite Ground\",\"authors\":\"Kim Gyeong Eop, Kyungho Park, Kim ho yeoun, Daehyeon Kim\",\"doi\":\"10.12814/JKGSS.2018.17.3.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravel Compaction Pile (GCP) method is currently being designed and constructed by empirical method because quantitative design method has not been developed, leading to various types of and frequent destruction such as expansion failure and shear failure and difficulties in establishing clear cause and developing measure to prevent destruction. In addition, despite the difference with domestic construction equipment and material characteristics, the methods applied to the overseas ground is applied to the domestic as it is, leading to remarkable difference between applied values and measured values in variables such as bearing capacity and the settlement amount. The purpose of this study was, therefore, to propose a reasonable and safe design method of GCP method by analyzing the settlement and stress behavior characteristics according to ground strength change under GCP method applied to domestic clay ground. For the purpose, settlement amount of composite ground, stress concentration ratio, and maximum horizontal displacement and expected location of GCP were analyzed using ABAQUS. The results of analysis showed that the settlement and Settlement reduction rate of composite ground decreased by more than 60% under replacement ratio of 30% or more, that the maximum horizontal displacement of GCP occurred at the depth 2.6 times pile diameter, and that the difference in horizontal displacement is slight under replacement ratio of 30%.\",\"PeriodicalId\":42164,\"journal\":{\"name\":\"Journal of the Korean Geosynthetic Society\",\"volume\":\"17 1\",\"pages\":\"19-32\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Geosynthetic Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12814/JKGSS.2018.17.3.019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Geosynthetic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12814/JKGSS.2018.17.3.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前砾石压实桩(GCP)方法的设计和施工采用经验方法,因为定量设计方法尚未发展,导致膨胀破坏、剪切破坏等破坏类型多样、频繁发生,难以明确原因,制定防止破坏的措施。此外,尽管与国内施工设备、材料特性存在差异,但国外地基的方法在国内是照搬的,导致承载力、沉降量等变量的应用值与实测值存在显著差异。因此,本研究的目的是通过分析国内粘土地基在GCP法下根据地基强度变化产生的沉降和应力行为特征,提出一种合理、安全的GCP法设计方法。利用ABAQUS软件对复合地基沉降量、应力集中比、最大水平位移及GCP的预期位置进行分析。分析结果表明,在置换率为30%及以上时,复合地基的沉降和沉降减减率下降幅度均在60%以上,GCP的最大水平位移出现在2.6倍桩径处,置换率为30%时,水平位移差异不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finite Element Analysis for Investigating the Behavior of Gravel Compaction Pile Composite Ground
Gravel Compaction Pile (GCP) method is currently being designed and constructed by empirical method because quantitative design method has not been developed, leading to various types of and frequent destruction such as expansion failure and shear failure and difficulties in establishing clear cause and developing measure to prevent destruction. In addition, despite the difference with domestic construction equipment and material characteristics, the methods applied to the overseas ground is applied to the domestic as it is, leading to remarkable difference between applied values and measured values in variables such as bearing capacity and the settlement amount. The purpose of this study was, therefore, to propose a reasonable and safe design method of GCP method by analyzing the settlement and stress behavior characteristics according to ground strength change under GCP method applied to domestic clay ground. For the purpose, settlement amount of composite ground, stress concentration ratio, and maximum horizontal displacement and expected location of GCP were analyzed using ABAQUS. The results of analysis showed that the settlement and Settlement reduction rate of composite ground decreased by more than 60% under replacement ratio of 30% or more, that the maximum horizontal displacement of GCP occurred at the depth 2.6 times pile diameter, and that the difference in horizontal displacement is slight under replacement ratio of 30%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
20.00%
发文量
0
期刊最新文献
Evaluation of Field Applicability of Slope of Improved Soil for Ground Stabilizer Analysis of the Correlation between the velocity speed of High-Speed Railways and the Suppressing Effect of lateral Displacement of retaining wall according to the Arrangement of Stabilizing Piles Behavioral Characteristics and Safety Management Plan for Fill Dam During Water Level Fluctuation Using Numerical Analysis Application of Laboratory Pressurized Vane Shear Test and Discrete Element Method for Determination of Foam-conditioned Soil Properties Development and Reliability Verification of Quality Control System for Compaction Grouting Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1