基于聚类的大规模路网约束轨迹预测框架

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Ad Hoc & Sensor Wireless Networks Pub Date : 2020-11-16 DOI:10.1145/3416011.3424751
R. Sousa, A. Boukerche, A. Loureiro
{"title":"基于聚类的大规模路网约束轨迹预测框架","authors":"R. Sousa, A. Boukerche, A. Loureiro","doi":"10.1145/3416011.3424751","DOIUrl":null,"url":null,"abstract":"The increasing availability of vehicle trajectory and road network datasets is crucial for the development of novel trajectory data mining-based applications. For instance, we can design more efficient routing protocols by applying vehicle trajectory prediction. In this paper, we propose a new cluster-based framework to predict road-network constrained trajectories. The framework, designed to perform long-term predictions, combines several steps that use historical trajectory datasets to train prediction models. Experimental results show the framework's effectiveness and efficiency to predict trajectories with different characteristics in a new real-world, large-scale scenario. Besides that, the framework outperformed some other solutions found in the literature in terms of prediction accuracy and computational overhead.mmm;","PeriodicalId":55557,"journal":{"name":"Ad Hoc & Sensor Wireless Networks","volume":"25 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Cluster-based Framework for Predicting Large Scale Road-Network Constrained Trajectories\",\"authors\":\"R. Sousa, A. Boukerche, A. Loureiro\",\"doi\":\"10.1145/3416011.3424751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing availability of vehicle trajectory and road network datasets is crucial for the development of novel trajectory data mining-based applications. For instance, we can design more efficient routing protocols by applying vehicle trajectory prediction. In this paper, we propose a new cluster-based framework to predict road-network constrained trajectories. The framework, designed to perform long-term predictions, combines several steps that use historical trajectory datasets to train prediction models. Experimental results show the framework's effectiveness and efficiency to predict trajectories with different characteristics in a new real-world, large-scale scenario. Besides that, the framework outperformed some other solutions found in the literature in terms of prediction accuracy and computational overhead.mmm;\",\"PeriodicalId\":55557,\"journal\":{\"name\":\"Ad Hoc & Sensor Wireless Networks\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc & Sensor Wireless Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3416011.3424751\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc & Sensor Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3416011.3424751","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

车辆轨迹和道路网络数据集的日益可用性对于基于轨迹数据挖掘的新型应用的发展至关重要。例如,我们可以通过应用车辆轨迹预测来设计更有效的路由协议。在本文中,我们提出了一个新的基于聚类的框架来预测路网约束轨迹。该框架旨在执行长期预测,结合了使用历史轨迹数据集来训练预测模型的几个步骤。实验结果表明,该框架在新的现实世界大规模场景中预测具有不同特征的轨迹的有效性和效率。此外,该框架在预测精度和计算开销方面优于文献中发现的一些其他解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Cluster-based Framework for Predicting Large Scale Road-Network Constrained Trajectories
The increasing availability of vehicle trajectory and road network datasets is crucial for the development of novel trajectory data mining-based applications. For instance, we can design more efficient routing protocols by applying vehicle trajectory prediction. In this paper, we propose a new cluster-based framework to predict road-network constrained trajectories. The framework, designed to perform long-term predictions, combines several steps that use historical trajectory datasets to train prediction models. Experimental results show the framework's effectiveness and efficiency to predict trajectories with different characteristics in a new real-world, large-scale scenario. Besides that, the framework outperformed some other solutions found in the literature in terms of prediction accuracy and computational overhead.mmm;
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc & Sensor Wireless Networks
Ad Hoc & Sensor Wireless Networks 工程技术-电信学
CiteScore
2.00
自引率
44.40%
发文量
0
审稿时长
8 months
期刊介绍: Ad Hoc & Sensor Wireless Networks seeks to provide an opportunity for researchers from computer science, engineering and mathematical backgrounds to disseminate and exchange knowledge in the rapidly emerging field of ad hoc and sensor wireless networks. It will comprehensively cover physical, data-link, network and transport layers, as well as application, security, simulation and power management issues in sensor, local area, satellite, vehicular, personal, and mobile ad hoc networks.
期刊最新文献
Enumeration of the Number of Spanning Trees of the Globe Network and its Subdivision A HYBRID OPTIMIZATION ALGORITHMS FOR SOLVING METRIC DIMENSION PROBLEM Detecting Malicious Use of DoH Tunnels Using Statistical Traffic Analysis RPL+: An Improved Parent Selection Strategy for RPL in Wireless Smart Grid Networks Prototype of deployment of Federated Learning with IoT devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1