{"title":"聚丙烯纤维与人工砂再生混凝土力学性能试验分析","authors":"Huan Luo, F. Ma, Qian-kun Yang","doi":"10.18280/acsm.440204","DOIUrl":null,"url":null,"abstract":"Received: 10 November 2019 Accepted: 17 January 2020 This paper aims to disclose the working performance and mechanical performance of recycled concrete made from polypropylene fiber and artificial sand (P-RCAS). Taking fiber content and concrete strength as variables, a total of 90 P-RCAS cubes and prisms were designed and prepared for axial loading tests. The working performance of the PRCAS was tested, the failure process and failure mode of the specimens were observed, and the compressive strengths of cubs and prisms were measured. Moreover, the authors probed deep into how fiber content affect the working performance and mechanical performance of the P-RCAS. The results show that adding polypropylene fiber into the artificial sand recycled concrete (RCAS) can produce concrete with good workability; the additional fibers help to enhance the compressive strength of RCAS specimens on all strength levels, but the enhancement was insignificantly for specimens on high strength levels. Finally, the test data were used to fit the calculation formulas for fiber content, water-cement ratio, and compressive strength, as well as the relationship between axial compressive strength and cube compressive strength. The research results provide reference for further research and engineering application of the RCAS.","PeriodicalId":7897,"journal":{"name":"Annales De Chimie-science Des Materiaux","volume":"24 1","pages":"97-102"},"PeriodicalIF":0.6000,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Analysis on Mechanical Performance of Recycled Concrete Made from Polypropylene Fiber and Artificial Sand\",\"authors\":\"Huan Luo, F. Ma, Qian-kun Yang\",\"doi\":\"10.18280/acsm.440204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received: 10 November 2019 Accepted: 17 January 2020 This paper aims to disclose the working performance and mechanical performance of recycled concrete made from polypropylene fiber and artificial sand (P-RCAS). Taking fiber content and concrete strength as variables, a total of 90 P-RCAS cubes and prisms were designed and prepared for axial loading tests. The working performance of the PRCAS was tested, the failure process and failure mode of the specimens were observed, and the compressive strengths of cubs and prisms were measured. Moreover, the authors probed deep into how fiber content affect the working performance and mechanical performance of the P-RCAS. The results show that adding polypropylene fiber into the artificial sand recycled concrete (RCAS) can produce concrete with good workability; the additional fibers help to enhance the compressive strength of RCAS specimens on all strength levels, but the enhancement was insignificantly for specimens on high strength levels. Finally, the test data were used to fit the calculation formulas for fiber content, water-cement ratio, and compressive strength, as well as the relationship between axial compressive strength and cube compressive strength. The research results provide reference for further research and engineering application of the RCAS.\",\"PeriodicalId\":7897,\"journal\":{\"name\":\"Annales De Chimie-science Des Materiaux\",\"volume\":\"24 1\",\"pages\":\"97-102\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De Chimie-science Des Materiaux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/acsm.440204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Chimie-science Des Materiaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.440204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental Analysis on Mechanical Performance of Recycled Concrete Made from Polypropylene Fiber and Artificial Sand
Received: 10 November 2019 Accepted: 17 January 2020 This paper aims to disclose the working performance and mechanical performance of recycled concrete made from polypropylene fiber and artificial sand (P-RCAS). Taking fiber content and concrete strength as variables, a total of 90 P-RCAS cubes and prisms were designed and prepared for axial loading tests. The working performance of the PRCAS was tested, the failure process and failure mode of the specimens were observed, and the compressive strengths of cubs and prisms were measured. Moreover, the authors probed deep into how fiber content affect the working performance and mechanical performance of the P-RCAS. The results show that adding polypropylene fiber into the artificial sand recycled concrete (RCAS) can produce concrete with good workability; the additional fibers help to enhance the compressive strength of RCAS specimens on all strength levels, but the enhancement was insignificantly for specimens on high strength levels. Finally, the test data were used to fit the calculation formulas for fiber content, water-cement ratio, and compressive strength, as well as the relationship between axial compressive strength and cube compressive strength. The research results provide reference for further research and engineering application of the RCAS.
期刊介绍:
The ACSM is concerning the cutting-edge innovations in solid material science. The journal covers a broad spectrum of scientific fields, ranging all the way from metallurgy, semiconductors, solid mineral compounds, organic macromolecular compounds to composite materials. The editorial board encourages the submission of original papers that deal with all aspects of material science, including but not limited to synthesis and processing, property characterization, reactivity and reaction kinetics, evolution in service, and recycling. The papers should provide new insights into solid materials and make a significant original contribution to knowledge.