{"title":"提高数据仓库ETL阶段的数据质量","authors":"Neha Gupta, Sakshi Jolly","doi":"10.4018/IJDWM.2021010105","DOIUrl":null,"url":null,"abstract":"Data usually comes into data warehouses from multiple sources having different formats and are specifically categorized into three groups (i.e., structured, semi-structured, and unstructured). Various data mining technologies are used to collect, refine, and analyze the data which further leads to the problem of data quality management. Data purgation occurs when the data is subject to ETL methodology in order to maintain and improve the data quality. The data may contain unnecessary information and may have inappropriate symbols which can be defined as dummy values, cryptic values, or missing values. The present work has improved the expectation-maximization algorithm with dot product to handle cryptic data, DBSCAN method with Gower metrics to ensure dummy values, Wards algorithm with Minkowski distance to improve the results of contradicting data and K-means algorithm along with Euclidean distance metrics to handle missing values in a dataset. These distance metrics have improved the data quality and also helped in providing consistent data to be loaded into a data warehouse.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhancing Data Quality at ETL Stage of Data Warehousing\",\"authors\":\"Neha Gupta, Sakshi Jolly\",\"doi\":\"10.4018/IJDWM.2021010105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data usually comes into data warehouses from multiple sources having different formats and are specifically categorized into three groups (i.e., structured, semi-structured, and unstructured). Various data mining technologies are used to collect, refine, and analyze the data which further leads to the problem of data quality management. Data purgation occurs when the data is subject to ETL methodology in order to maintain and improve the data quality. The data may contain unnecessary information and may have inappropriate symbols which can be defined as dummy values, cryptic values, or missing values. The present work has improved the expectation-maximization algorithm with dot product to handle cryptic data, DBSCAN method with Gower metrics to ensure dummy values, Wards algorithm with Minkowski distance to improve the results of contradicting data and K-means algorithm along with Euclidean distance metrics to handle missing values in a dataset. These distance metrics have improved the data quality and also helped in providing consistent data to be loaded into a data warehouse.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/IJDWM.2021010105\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJDWM.2021010105","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Enhancing Data Quality at ETL Stage of Data Warehousing
Data usually comes into data warehouses from multiple sources having different formats and are specifically categorized into three groups (i.e., structured, semi-structured, and unstructured). Various data mining technologies are used to collect, refine, and analyze the data which further leads to the problem of data quality management. Data purgation occurs when the data is subject to ETL methodology in order to maintain and improve the data quality. The data may contain unnecessary information and may have inappropriate symbols which can be defined as dummy values, cryptic values, or missing values. The present work has improved the expectation-maximization algorithm with dot product to handle cryptic data, DBSCAN method with Gower metrics to ensure dummy values, Wards algorithm with Minkowski distance to improve the results of contradicting data and K-means algorithm along with Euclidean distance metrics to handle missing values in a dataset. These distance metrics have improved the data quality and also helped in providing consistent data to be loaded into a data warehouse.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving