基于卷积神经网络的武器检测与分类

Mohammed Abid Chaudhary
{"title":"基于卷积神经网络的武器检测与分类","authors":"Mohammed Abid Chaudhary","doi":"10.46565/jreas.202273387-390","DOIUrl":null,"url":null,"abstract":"Limiting gun violence has become a major concern in recent years. Deep Learning models can help reduce gun violence by automatically detecting weapons from security cameras. In this project, we will be implementing the use of Deep learning algorithms, to detect any firearms / weapons to improve response time and reduce potential harm. The proposed system in this project is a weapon detection system based on CNN. The project will involve the use of various resources for implementation, such as: Tensorflow, OpenCV, Python, CNN, Google Colab, Numpy, Pandas","PeriodicalId":14343,"journal":{"name":"International Journal of Research in Engineering and Applied Sciences","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WEAPON DETECTION AND CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORK\",\"authors\":\"Mohammed Abid Chaudhary\",\"doi\":\"10.46565/jreas.202273387-390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Limiting gun violence has become a major concern in recent years. Deep Learning models can help reduce gun violence by automatically detecting weapons from security cameras. In this project, we will be implementing the use of Deep learning algorithms, to detect any firearms / weapons to improve response time and reduce potential harm. The proposed system in this project is a weapon detection system based on CNN. The project will involve the use of various resources for implementation, such as: Tensorflow, OpenCV, Python, CNN, Google Colab, Numpy, Pandas\",\"PeriodicalId\":14343,\"journal\":{\"name\":\"International Journal of Research in Engineering and Applied Sciences\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Research in Engineering and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46565/jreas.202273387-390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Research in Engineering and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46565/jreas.202273387-390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,限制枪支暴力已成为一个主要问题。深度学习模型可以通过自动检测安全摄像头中的武器来帮助减少枪支暴力。在这个项目中,我们将实施使用深度学习算法来检测任何枪支/武器,以缩短响应时间并减少潜在危害。本课题提出的系统是一个基于CNN的武器检测系统。该项目将涉及使用各种资源来实现,例如:Tensorflow, OpenCV, Python, CNN,谷歌Colab, Numpy, Pandas
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WEAPON DETECTION AND CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORK
Limiting gun violence has become a major concern in recent years. Deep Learning models can help reduce gun violence by automatically detecting weapons from security cameras. In this project, we will be implementing the use of Deep learning algorithms, to detect any firearms / weapons to improve response time and reduce potential harm. The proposed system in this project is a weapon detection system based on CNN. The project will involve the use of various resources for implementation, such as: Tensorflow, OpenCV, Python, CNN, Google Colab, Numpy, Pandas
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EYE-DIRECTION-BASED SAFETY NAVIGATION SYSTEM FOR ELDERLY AND PHYSICALLY CHALLENGED PERSONS AAHAR AYOJAN: LEFT OVER FOOD MANAGEMENT SYSTEM ENERGY SAVING AND DISTANCE TRAVELED OF THE RAILWAY TRAIN FROM ITS BIRTH TO THE FOURTH INDUSTRIAL REVOLUTION MODELING DESIGN OF A UAV BLADE MONOPOLE WITH THE USE OF DIFFERENT RTADIATING ELEMENTS AND SIMULATION OF DRA ANTENNA Rammed Earth Construction Using Cement & Coir Fibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1