{"title":"洁净室大跨度制造区空气温度特性的研究","authors":"Liandong Dong, Ke Zhang, Zhen Qian","doi":"10.1080/14733315.2021.1914917","DOIUrl":null,"url":null,"abstract":"Abstract The main aim of this study is to predict the temperature characteristics in large-span manufacture area of clean room using the Computational Fluid Dynamics (CFD). The CFD model was established based on a large semiconductor plant and verified by measured data. Then, the effects of these factors including fan filter unit (FFU) configuration, building envelope and fresh air system on temperature distribution were analyzed. The results indicate that both increasing FFU air velocity and placement rate can decrease maximum temperature difference. The 33% placement rate has a higher performance-price ratio because the maximum temperature difference differs slightly at 33% and 50% placement rates. The number of FFU can decrease by 415 when placement rate reduces from 50% to 33%. Increasing the thermal resistance of building envelope can also improve the temperature distribution. And changing the thermal insulation properties of roof is more effective than changing that of external wall. So, more attention should be paid to the thermal insulation properties of roof. For fresh air system, fresh air needs to mix well with original air to reduce the effect on temperature. Thus, fresh air inlet port should be inserted into the return air plenum in the design.","PeriodicalId":55613,"journal":{"name":"International Journal of Ventilation","volume":"70 1","pages":"284 - 297"},"PeriodicalIF":1.1000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The investigation of air temperature characteristics in large-span manufacture area of clean room\",\"authors\":\"Liandong Dong, Ke Zhang, Zhen Qian\",\"doi\":\"10.1080/14733315.2021.1914917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main aim of this study is to predict the temperature characteristics in large-span manufacture area of clean room using the Computational Fluid Dynamics (CFD). The CFD model was established based on a large semiconductor plant and verified by measured data. Then, the effects of these factors including fan filter unit (FFU) configuration, building envelope and fresh air system on temperature distribution were analyzed. The results indicate that both increasing FFU air velocity and placement rate can decrease maximum temperature difference. The 33% placement rate has a higher performance-price ratio because the maximum temperature difference differs slightly at 33% and 50% placement rates. The number of FFU can decrease by 415 when placement rate reduces from 50% to 33%. Increasing the thermal resistance of building envelope can also improve the temperature distribution. And changing the thermal insulation properties of roof is more effective than changing that of external wall. So, more attention should be paid to the thermal insulation properties of roof. For fresh air system, fresh air needs to mix well with original air to reduce the effect on temperature. Thus, fresh air inlet port should be inserted into the return air plenum in the design.\",\"PeriodicalId\":55613,\"journal\":{\"name\":\"International Journal of Ventilation\",\"volume\":\"70 1\",\"pages\":\"284 - 297\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Ventilation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14733315.2021.1914917\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ventilation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14733315.2021.1914917","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
The investigation of air temperature characteristics in large-span manufacture area of clean room
Abstract The main aim of this study is to predict the temperature characteristics in large-span manufacture area of clean room using the Computational Fluid Dynamics (CFD). The CFD model was established based on a large semiconductor plant and verified by measured data. Then, the effects of these factors including fan filter unit (FFU) configuration, building envelope and fresh air system on temperature distribution were analyzed. The results indicate that both increasing FFU air velocity and placement rate can decrease maximum temperature difference. The 33% placement rate has a higher performance-price ratio because the maximum temperature difference differs slightly at 33% and 50% placement rates. The number of FFU can decrease by 415 when placement rate reduces from 50% to 33%. Increasing the thermal resistance of building envelope can also improve the temperature distribution. And changing the thermal insulation properties of roof is more effective than changing that of external wall. So, more attention should be paid to the thermal insulation properties of roof. For fresh air system, fresh air needs to mix well with original air to reduce the effect on temperature. Thus, fresh air inlet port should be inserted into the return air plenum in the design.
期刊介绍:
This is a peer reviewed journal aimed at providing the latest information on research and application.
Topics include:
• New ideas concerned with the development or application of ventilation;
• Validated case studies demonstrating the performance of ventilation strategies;
• Information on needs and solutions for specific building types including: offices, dwellings, schools, hospitals, parking garages, urban buildings and recreational buildings etc;
• Developments in numerical methods;
• Measurement techniques;
• Related issues in which the impact of ventilation plays an important role (e.g. the interaction of ventilation with air quality, health and comfort);
• Energy issues related to ventilation (e.g. low energy systems, ventilation heating and cooling loss);
• Driving forces (weather data, fan performance etc).